Average-Case Hardness in Proof Complexity (with focus on clique and colouring)

16 November 2023

Oxford-Warwick Complexity Seminar

Susanna F. de Rezende

Lund University

- Natural question: Are hard problems rare? Or are most problems hard?
- Relations to:
 - Pseudorandomness
 - Cryptography
 - □ Learning
 - □ Meta-complexity
- Candidate hard instances for unconditional lower bounds
 - Lower bounds for algorithmic paradigms
 - Techniques that captures "what makes the problem hard"

Why study average-case?

Plan outline

- Planted clique
- Proof systems (and algorithms)
- Proof complexity lower bounds for planted clique
- Planted colouring and lower bounds
- New techniques for clique
- Open problems

Planted clique problem

Erdős–Rényi random graph: $G \sim \mathcal{G}(n, 1/2)$

whp largest clique has size $\omega(G) \approx 2 \log n$

Polynomial time algorithm that distinguishes?

Susanna de Rezende (Lund University)

- Planted *k*-clique: $G \sim \mathscr{G}(n, 1/2, k)$
- $G' + K_k$ where $G' \sim \mathcal{G}(n, 1/2)$ and K_k a random k-clique

Planted clique problem

Given G, decide if $G \sim \mathcal{G}(n, 1/2)$ or $G \sim \mathcal{G}(n, 1/2, k)$

- Naïve $n^{O(\log n)}$ algorithm since max clique in $G \sim \mathcal{G}(n, 1/2)$ has size $\sim 2\log n$
- Polynomial-time algorithm when $k \ge \Omega(\sqrt{n})$ [AKS '98]
- Otherwise believed to be hard: planted clique conjecture

Goal: Prove planted clique conjecture for bounded computational models

- Trace of algorithms give proof in some *proof* system
- Lower bound on size of proof \rightarrow lower bound on running time

algorithmically hard

algorithmically easy provably easy $k = \Omega(\sqrt{n})$ [AKS '98]

Planted clique problem

Erdős–Rényi random graph: $G \sim \mathscr{G}(n, 1/2)$

whp largest clique has size $\omega(G) \approx 2 \log n$

Three variations:

- Search: Given $G \sim \mathcal{G}(n, 1/2, k)$ find *k*-clique ▶ Refutation: Given $G \sim \mathscr{G}(n, 1/2)$ prove no k-clique ▶ Decision: Given $G \sim \mathscr{G}(n, 1/2)$ or
- $G \sim \mathcal{G}(n, 1/2, k)$ decide which

Planted k-clique: $G \sim \mathscr{G}(n, 1/2, k)$ $G' + K_k$ where $G' \sim \mathcal{G}(n, 1/2)$ and K_k a random k-clique

- Very well studied problem
- ▶ NP-complete [Karp '72] (even mentioned in [Cook '71])
- NP-hard to approximate [Arora, Safra '92, Håstad '99, Zuckerman '07]
- $\mathbb{W}[1]$ -complete when parameterised by k [Downey, Fellows '95]

Why clique?

Susanna de Rezende (Lund University)

Equivalent to tree-like resolution

Resolution proof (CDCL SAT solvers)

CNF formula:

 $(\neg x \lor \neg y \lor z) \land (x \lor z) \land (x \lor \neg y)$ $\land (y \lor \neg z) \land (\neg x \lor \neg y \lor \neg z) \land (y \lor z)$

Resolution refutation of F: derivation of empty clause \perp from formula using resolution rule $\frac{A \lor x \quad B \lor \neg x}{A \lor B}$

$$\neg x \lor \neg y \lor z \quad \neg x \lor \neg y \lor \neg z$$
$$\neg x \lor \neg y \qquad \neg y$$
$$\neg y$$

Susanna de Rezende (Lund University)

Average-Case Hardness in Proof Complexity

39

Cutting planes (integer linear programming)

Constraints: inequalities instead of clauses

 $x \lor y \lor \neg z \implies x + y + (1 - z) \ge 1$

Boolean constraints: $0 \le x \le 1$

- Rules: linear combination, integer reasoning
- ▶ e.g., $2x + 2y \ge 1$ → $x + y \ge 1$
- Refutation: derive $1 \leq 0$

Proof size: # of inequalities in proof

Algebraic and semi-algebraic proof systems

- Constraints: polynomials instead of clauses $x \lor y \lor \neg z \implies (1 - x)(1 - y)z = 0 \implies \overline{x} \overline{y} z = 0$ Boolean constraints: $x^2 = x$ (and $\overline{x} + x = 1$)
- UNSAT iff no common roots

Hilbert's Nullstellensatz, Polynomial Calculus (Gröbner basis computation)

LP/SDP relaxations: Sherali-Adams, Sum-of-Square

Proof size: # of monomials in proof **Proof degree:** max degree of monomials in proof

Why sum of squares?

- Can count (refute pigeonhole principle in degree 2)
- Strongest known algorithmic technique for many optimisation problems
- Some bounds optimal under Unique Games Conjecture
- Captures many polynomial time algorithms
- Degree-2 captures spectral algorithms
- In general, sum of squares exponentially stronger than Sherali-Adams
- For some problems, Sherali-Adams just as powerful as sum of squares

Hierarchy of proof systems

Susanna de Rezende (Lund University)

Size lower bounds of $n^{\Omega(\log n)}$ for planted clique

- Similar Graphs $G \sim \mathcal{G}(n, 1/2)$
- ▶ Upper bound $n^{O(\log n)}$ for $k > 2\log n$
- Some related results:
- Resolution: [BIS '07, Pang '21]
 Denser graphs (non-tight)
 - D binary encoding [LPRT '17, DGGM '20]
- Degree lower bounds for SoS for $k < n^{1/2}$ [MPW '15, BHKKMP '19, Pang '21]

Resolution complexity of clique

- Resolution captures state-of-the-art algorithms

- \triangleright Prove this for tree-like resolution (proof size \geq # of maximal cliques)

Backtracking search with branch-and-bound strategy: if clear that current search-branch will not lead to larger clique, cut off search and backtrack

▷ Can we prove that resolution requires size $n^{\Omega(\log n)}$ for planted clique? [Beversdorff-Galesi-Lauria '13]

Prove for regular resolution $n^{\Omega(\log n)}$ lower bound for $k = O(\log n)$ [ABARLNR '18]

Proof strategy for average-case lower bounds

Define property \mathscr{P} s.t.

- If G has property \mathscr{P} then lower bound holds
- ▶ With high probability $G \sim \mathscr{G}(n, 1/2)$ has property \mathscr{P}

For tree-like resolution:

- - \Box If G has rich extension property, then tree-like resolution size $n^{\Omega(\log n)}$
 - $\Box G \sim \mathcal{G}(n, 1/2)$ has the rich extension property

Rich extensions property: every clique of size $\leq \epsilon \log n$ has $\geq n^{1/5}$ possible extensions

Other graphs that have rich extension property: complete ℓ -partite graphs, for $\ell < 2\log n$

What makes random graphs hard?

- \triangleright Complete ℓ -partite graphs, for $\ell < 2\log n$, not hard!
- Not even for regular resolution, upper bound $2^{O(\ell)} \cdot n^{O(1)}$

For regular resolution:

- Rich extensions property
- Small error sets property: any large set of vertices "almost" has rich

Susanna de Rezende (Lund University)

extension property, i.e., not many "error cliques" with few extensions

What makes random graphs hard?

For unary Sherali-Adams:

- Rich extensions property
- Small error sets property
- Also need to analyse Fourier characters!
 - Much more complicated (pseudo-calibration)
 - Not combinatorial
 - We will get back to this later

- Erdős–Rényi random graph: $G \sim \mathcal{G}(n, d/n)$
- ▶ or *d*-regular random graph: $G \sim \mathscr{G}_{n,d}$

where $d \ge 2k \ln k - \ln k$

Planted k-colouring

- ▶ Planted *k*-colouring: $G \sim \mathscr{G}_k(n, d/n)$ or $G \sim \mathscr{G}_{n,d,k}$
- fix k-colouring and sample graph respecting colouring

Complexity of colouring

Can we colour G with k colours without monochromatic edges?

- k-colouring is NP-hard for $k \ge 3$ [Karp '72]
- No known average-case reduction from planted clique
- Approximating $\chi(G)$ is hard [..., Zuckerman '07]

Appears to be hard on average for $G \sim \mathcal{G}_{n,d}$ or $G \sim \mathcal{G}(n, d/n)$, where $d \approx 2k \ln k$

Worst-case / average-case complexity of colouring? [Beame, Culberson, Mitchell, Moore '05]

Complexity of colouring random graphs

Algorithms solving colouring for $G \sim$

- McDiarmid calculus '84: captured by resolution [Beame, Culberson, Mitchell, Moore '05]
- Algebraic methods: captured by Nullstellensatz and polynomial calculus
- Lovász theta function: captured by SoS [Banks, Kleinberg, Moore '17]

Susanna de Rezende (Lund University)

$$\mathscr{G}_{n,d}$$
 or $G \sim \mathscr{G}(n, d/n)$:

Simplified summary

	k-clique	k-coloring		3-SAT	3-XOR	
Tree-like Resolution	HARD [Beyersdorff, Galesi, Lauria '11]	HARD	$\begin{array}{l} \mbox{HARD [Chvátal, Szemerédi '88]} \\ \mbox{Improved [Ben-Sasson, Galesi '01] (size } \exp(n/\Delta^{1+\epsilon})) \Delta=m/n \end{array}$			
Resolution	OPEN Some partial results ⁽¹⁾	[Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] $\exp(n/\Delta^{2+\epsilon})$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]			
Polynomial Calculus	OPEN	HARD [Conneryd, dR ,	$\mathbb{F} \neq 2$	HARD [Ben-Sasson, Impagliazzo '99]		
		Nordström, Pang,	$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY	
Sherali- Adams	OPEN Some partial results ⁽²⁾	OPEN		HARD		
Sum of Squares	OPEN Some partial results ⁽³⁾ $\mathcal{G}(n, 1/2)$: degree = $\Theta(\log n)$	OPEN [Kothari, Manohar '21] $\mathcal{G}(n, 1/2)$: $d \ge \Omega(\log n)$	[Grigoriev '01, Schoenebeck '08]			
Cutting Planes	OPEN	OPEN	-	OPEN $\Theta(\log n)$ -SAT ming, Pankratov, Pitassi, e '17] [Hrubeš, Pudlák '17]	Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]	

⁽¹⁾ [Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, **dR**, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13]

⁽²⁾ [**dR**, Potechin, Risse '23]

⁽³⁾ [Meka, Potechin, Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16], [Pang '21]

Susanna de Rezende (Lund University)

Back to planted clique

Clique formula Clique(G, k)

Block encoding

Variables: x_v for every vertex v

Clauses:

 $\sum x_v = 1$ for each block V_i $v \in V_i$ $x_v x_u = 0$ non-edge $(u, v) \notin E(G)$

How to prove uSA size lower bounds

Unary Sherali-Adams refutation

"Pseudo-measure" μ mapping polynomials to \mathbb{R} , linear Ø

$$\Box -\delta \le \mu(p_i q_i) \le \delta$$

$$\Box \ \mu(r_j) \geq -\delta$$

Size lower bound: $\mu(1)/\delta$

should be defined for all polynomials (not only bounded degree!)

 μ defined on monomials and extended linearly to polynomials

(μ is the dual object for linear system with objective minimize sum of coefficients)

Clique formula Clique(G, k)

Block encoding

Variables: x_v for every vertex v

Clauses:

 $\sum_{v \in V_i} x_v = 1 \text{ for each block } V_i$ $x_v x_u = 0 \text{ non-edge } (u, v) \notin E(G)$

- Monomial = rectangle Q
 - \Box Set of k-tuples ruled out as candidate k-clique
 - \Box k-dimensional hypercube
 - □ Cartesian product of $Q_i \subseteq V_i$

Susanna de Rezende (Lund University)

Pseudo-measure is a measure of progress

- Measure we define satisfies much more: captures progress
- How much progress does a monomial/rectangle Q represent?

- Axioms should represent small progress
- Set of all tuples should represent complete progress
- For general Q? The smallest derivation of Q

Min # of axioms needed to derive Q(between 1 and n^2) — useful for degree/ width lower bound

Expected behavior of a progress measure

Axioms ≈ 0

Large rectangle progress \approx size of rectangle

(Large then should behave "random" / as expected)

If rectangle contains small blocks? Depends...

Susanna de Rezende (Lund University)

 $Q = \{\text{rectangles at leaves}\}\$ is a partition of Qcan analyse if blocks with only 1 vertex are axioms or are interesting

Susanna de Rezende (Lund University)

Decomposition of rectangles

- Given rectangle Q: partition Q into family of rectangles Q s.t. $\forall R \in Q$: ^{\Box} Either R is an axiom (or contained in an axiom)

,	- •		Г
	•		

^{\Box} Or *R* is a clique on small blocks + large blocks (good rectangles)

- $\mu(\text{small } R) \leq \text{negligible}$ \Box Or R is so small, it represents negligible progress
- Want to define μ that satisfies this and also additivity • $\mu(\mathbf{p})$

Susanna de Rezende (Lund University)

 $\mu(\text{axioms}) \approx 0$

 $\mu(\text{good } R) \approx |R|$

 $\mu(Q) = \sum \mu(R)$

 $R \in Q$

Defining the measure (failed attempts)

- Size of rectangle: $\mu_1(Q) = |Q|$ Fails on axioms

Progress is to rule out cliques:
$$\mu_2(Q) = \{ \# k \text{-cliques in } Q \}$$
 Fails on whole space
Let's rewrite failed attempts
For $E \subseteq \binom{t}{2}$, we have $\chi_E(G[t]) = \prod_{e \in E} \chi_e(G[t])$
It is a clique = $\sum_{E \subseteq \binom{t}{2}} \chi_E(G[t]) \cdot 2^{-\binom{k}{2}}$
 $\chi_Q(G[t]) = \sum_{I \in Q} \sum_{E \subseteq \binom{t}{3}} \chi_E(G[t]) \cdot 2^{-\binom{k}{2}}$
 $\mu_2(Q) = \sum_{I \in Q} \sum_{E \subseteq \binom{t}{3}} \chi_E(G[t]) \cdot 2^{-\binom{k}{2}}$
 $\mu_1(Q) = \sum_{I \in Q} \chi_Q(G[t])$

$$\mathbf{1}_{t \text{ is a clique}} = \sum_{E \subseteq \binom{t}{2}} \chi_{E}(G[t]) \cdot 2^{-\binom{k}{2}}$$
$$\mu_{2}(Q) = \sum_{t \in Q} \sum_{E \subseteq \binom{t}{2}} \chi_{E}(G[t]) \cdot 2^{-\binom{k}{2}}$$

Susanna de Rezende (Lund University)

Susanna de Rezende (Lund University)

Defining the measure (successful attempt)

- Choose $d = \varepsilon \cdot \omega(G)$
- Clearly additive!
- Note that if $E \neq \emptyset$, then $\mathbb{E}[\chi_F(G[t])] = 0$
- In expectation, measure satisfies:
 - □ Whole space has measure 1
 - \Box Rectangle Q has measure $|Q|/n^k$
 - \Box Axioms (conditioned on non-edge e = (u, v)) has measure 0
- "Just" need to show concentration...

(There are 2^{kn} rectangles)

Well-behaved graphs (property of random G)

1. Rich extension property: all small tuples have many common neighbours on every block

- 2. Small error sets (similar to "clique-denseness" from [ABARLNR '18], but more natural :)
 - Q has common neighbourhoods of expected size if: all small tuples have expected # of common neighbours in every block of Q
 - For all large Q, \exists small $S \subseteq V$ s.t. $Q \setminus S$ has common neighbourhoods of expected size

Well-behaved graphs (property of random G)

$$\left|\sum_{t \in Q} \chi_E(G[t])\right| \leq |Q| n^{-\varepsilon \cdot \operatorname{vc}(E)}$$

We rely on a notion related to vertex-co
Kernels as used in FPT algorithms
$$\mu(Q) = n^{-k} \sum_{t \in Q} \chi_{\emptyset}(G[t]) + n^{-k} \sum_{t \in Q} \sum_{E \subseteq \binom{t}{2}, E \neq \emptyset} \chi_E(G[t]) \approx (1 - n^{-\varepsilon}) \frac{|Q|}{n^k}$$
$$\operatorname{vc}(E) \leq d$$

- Step 1: Prove that random graphs are whp well-behaved
- Step 2: Prove that clique is hard for uSA on well-behaved graphs

Susanna de Rezende (Lund University)

3. Bounded character sum for every edge set E in class (simplified** version):

Random graphs have bounded character sums

Simplified statement

 $t \in O$

Markov inequality: $\Pr\left[\left|\sum_{t\in Q}\chi_{E}(G[t])\right| > s\right] \leq \frac{\mathbb{E}\left[\left(\sum_{t\in Q}\chi_{E}(G[t])\right)^{m}\right]}{s^{m}}$

$$\mathbb{E}\left[\left(\sum_{t\in Q}\chi_{E}(G[t])\right)^{m}\right] = \sum_{t_{1},\dots,t_{m}\in Q}\mathbb{E}\left[\prod_{i\in[m]}\chi_{E}(G[t_{i}])\right]$$
$$\leq \sum_{t_{1},\dots,t_{m}\in Q}\left|\mathbb{E}\left[\prod_{i\in[m]}\chi_{E}(G[t_{i}])\right]\right]$$

Susanna de Rezende (Lund University)

Note: E has a matching M of size $\geq vc(E)/2$

Planted clique

- Some take aways:
 - Discover properties of random graphs that imply hardness
 - We build on previous properties (tree-like resolution, regular resolution, unary Sherali-Adams)
 - Lower bound for unary Sherali-Adams essentially independent of encoding
 - Probably useful: progress measure, decomposition of rectangles
- Open problems:
 - Size lower bounds for other proof systems: Resolution, SA, NS over \mathbb{F}_p , SoS, ...
 - Improve result for planted clique of size \sqrt{n} (regular resolution, uSA)
 - Combinatorial description of "bounded character sums" property? Of μ ?

Susanna de Rezende (Lund University)

Final remarks

- Average-case hardness in proof complexity
 - Lower bound for classes of algorithms
 - Candidate hard-instances
 - Guide us to understand properties that make instances hard
- Open problems:
 - Upper bounds for different thresholds (e.g., colouring)
 - Lower bounds for other proof systems and other problems (e.g., MCSP)
 - Average-case reduction within a proof system?

More open problems

	k-clique	k-coloring				
Tree-like Resolution	HARD [Beyersdorff, Galesi, Lauria '11]	HARD				
Resolution	OPEN Some partial results ⁽¹⁾	[Beame, Culberson Mitchell, Moore '0				
Polynomial Calculus	OPEN	HARD [Conneryd, dR , Nordström, Pang, Risse '23]				
Sherali- Adams	OPEN Some partial results ⁽²⁾	OPEN				
Sum of Squares	OPEN Some partial results ⁽³⁾ $\mathcal{G}(n, 1/2)$: degree = $\Theta(\log n)$	OPEN [Kothari, Manohar '2 $\mathcal{G}(n, 1/2)$: $d \ge \Omega(\log n)$				
Cutting Planes	OPEN	OPEN				

⁽¹⁾ [Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, **dR**, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13]

 $^{(2)}$ [**dR**, Potechin, Risse '23]

⁽³⁾ [Meka, Potechin, Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16], [Pang '21]

Susanna de Rezende (Lund University)

