Average-Case Hardness in Proof Complexity (with focus on clique and colouring)

Susanna F. de Rezende

Lund University

16 November 2023
Oxford-Warwick Complexity Seminar

Why study average-case?

- Natural question: Are hard problems rare? Or are most problems hard?
- Relations to:
- Pseudorandomness
- Cryptography
- Learning
- Meta-complexity
* Candidate hard instances for unconditional lower bounds
- Lower bounds for algorithmic paradigms
- Techniques that captures "what makes the problem hard"

Plan outline

* Planted clique
- Proof systems (and algorithms)
- Proof complexity lower bounds for planted clique
- Planted colouring and lower bounds
* New techniques for clique
* Open problems

Planted clique problem

* Erdős-Rényi random graph: $G \sim \mathscr{G}(n, 1 / 2)$
whp largest clique has size $\omega(G) \approx 2 \log n$
* Planted k-clique: $G \sim \mathscr{G}(n, 1 / 2, k)$
$G^{\prime}+K_{k}$ where $G^{\prime} \sim \mathscr{G}(n, 1 / 2)$ and K_{k} a random k-clique

Polynomial time algorithm that distinguishes?

algorithmically hard

Planted clique problem

Given G, decide if $G \sim \mathscr{G}(n, 1 / 2)$ or $G \sim \mathscr{G}(n, 1 / 2, k)$

- Naïve $n^{O(\log n)}$ algorithm since max clique in $G \sim \mathscr{G}(n, 1 / 2)$ has size $\sim 2 \log n$
- Polynomial-time algorithm when $k \geq \Omega(\sqrt{n})$ [AKs '98]
- Otherwise believed to be hard: planted clique conjecture

Goal: Prove planted clique conjecture for bounded computational models

- Trace of algorithms give proof in some proof system
- Lower bound on size of proof \rightarrow lower bound on running time
algorithmically hard

Planted clique problem

* Erdős-Rényi random graph: $G \sim \mathscr{G}(n, 1 / 2)$
whp largest clique has size $\omega(G) \approx 2 \log n$
* Planted k-clique: $G \sim \mathscr{G}(n, 1 / 2, k)$
$G^{\prime}+K_{k}$ where $G^{\prime} \sim \mathscr{G}(n, 1 / 2)$ and K_{k} a random k-clique

$$
\begin{aligned}
& \chi(G)<k \Rightarrow \omega(G)<k \\
& \omega(G) \leq \vartheta(\bar{G}) \leq \chi(G)
\end{aligned}
$$

Three variations:

- Search: Given $G \sim \mathscr{G}(n, 1 / 2, k)$ find k-clique
- Refutation: Given $G \sim \mathscr{G}(n, 1 / 2)$ prove no k-clique
- Decision: Given $G \sim \mathscr{G}(n, 1 / 2)$ or $G \sim \mathscr{G}(n, 1 / 2, k)$ decide which

algorithmically hard

Why clique?

- Very well studied problem
- NP-complete [Karp '72] (even mentioned in [Cook '71])
- NP-hard to approximate [Arora, Safra '92, Håstad '99, Zuckerman '07]
- W[1]-complete when parameterised by k [Downey, Fellows ' 95]

- Requires time $n^{\Omega(k)}$ assuming ETH [Impagliazzo, Paturi' '01, Chen, Huagg, Kanj, Zia '04]
- Planted clique conjecture [Feige, Krauthgamer '03, ...], average-case reductions

B Boolean circuit (bounded-depth / monotone) [Rossman '08, '10, HRST '17]

"Decision tree" proof (DPLL)

CNF formula:

$$
\begin{gathered}
(\neg x \vee \neg y \vee z) \wedge(x \vee z) \wedge(x \vee \neg y) \\
\wedge(y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(y \vee z)
\end{gathered}
$$

Equivalent to tree-like resolution

Resolution proof (CDCL SAT solvers)

CNF formula:

$$
\begin{gathered}
(\neg x \vee \neg y \vee z) \wedge(x \vee z) \wedge(x \vee \neg y) \\
\wedge(y \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(y \vee z)
\end{gathered}
$$

- Resolution refutation of F : derivation of empty clause \perp from formula using resolution rule $\frac{A \vee x \quad B \vee \neg x}{A \vee B}$

$\frac{\neg x \vee \neg y \vee z \quad \neg x \vee \neg y \vee \neg z}{\neg \frac{\neg x \vee \neg y}{} \quad x \vee \neg y}$| $\frac{y \vee}{y}$ |
| :--- |

Cutting planes (integer linear programming)

- Constraints: inequalities instead of clauses

$$
x \vee y \vee \neg z \Rightarrow x+y+(1-z) \geq 1
$$

Boolean constraints: $0 \leq x \leq 1$

- Rules: linear combination, integer reasoning
- e.g., $2 x+2 y \geq 1 \quad \rightarrow x+y \geq 1$
- Refutation: derive $1 \leq 0$

Algebraic and semi-algebraic proof systems

- Constraints: polynomials instead of clauses

$$
x \vee y \vee \neg z \rightarrow(1-x)(1-y) z=0 \rightarrow \bar{x} \bar{y} z=0
$$

Boolean constraints: $x^{2}=x$ (and $\bar{x}+x=1$)

- UNSAT iff no common roots
- Hilbert's Nullstellensatz, Polynomial Calculus (Gröbner basis computation)
* UNSAT iff sum of polynomials * constraints is a positive function
- LP/SDP relaxations: Sherali-Adams, Sum-of-Square

Proof size: \# of monomials in proof Proof degree: max degree of monomials in proof

non-negative function (sum of monomials or sum of squares)

Sum of monomials:
$\alpha_{i} \geq 0$$\sum_{i} \alpha_{i} \cdot \prod_{j \in A_{i}} x_{j} \cdot \prod_{j \in B_{j}} \bar{x}_{j}$ Sum of squares: $\sum_{i} q_{i}^{2}$

Why sum of squares?

* Can count (refute pigeonhole principle in degree 2)
* Strongest known algorithmic technique for many optimisation problems
* Some bounds optimal under Unique Games Conjecture
- Captures many polynomial time algorithms
* Degree-2 captures spectral algorithms
* In general, sum of squares exponentially stronger than Sherali-Adams
- For some problems, Sherali-Adams just as powerful as sum of squares

Hierarchy of proof systems

What problems/instances have short proofs in different proof systems?
Can we characterise structures
 that require large proofs

Size lower bounds of $n^{\Omega(\log n)}$ for planted clique

- Graphs $G \sim \mathscr{G}(n, 1 / 2)$
- Upper bound $n^{O(\log n)}$ for $k>2 \log n$
- Some related results:
- Resolution:
- Denser graphs (non-tight)
- binary encoding [LPRT '17, DGGM '20]
- Degree lower bounds for SoS for $k<n^{1 / 2}$ [MPW'15, BHKKMP '19, Pang '21]

Resolution complexity of clique

- Resolution captures state-of-the-art algorithms
* Backtracking search with branch-and-bound strategy: if clear that current search-branch will not lead to larger clique, cut off search and backtrack
* Can we prove that resolution requires size $n^{\Omega(\log n)}$ for planted clique?
[Beversdorff-Galesi-Lauria '13]
* Prove this for tree-like resolution (proof size \geq \# of maximal cliques)
* Prove for regular resolution $n^{\Omega(\log n)}$ lower bound for $k=O(\log n)$ [ABdRLNR '18]

Proof strategy for average-case lower bounds

Define property \mathscr{P} s.t.

- If G has property \mathscr{P} then lower bound holds
- With high probability $G \sim \mathscr{G}(n, 1 / 2)$ has property \mathscr{P}

For tree-like resolution:
Rich extensions property: every clique of size $\leq \epsilon \log n$ has $\geq n^{1 / 5}$ possible extensions

- If G has rich extension property, then tree-like resolution size $n^{\Omega(\log n)}$
- $G \sim \mathscr{C}(n, 1 / 2)$ has the rich extension property
* Other graphs that have rich extension property: complete ℓ-partite graphs, for $\ell<2 \log n$

What makes random graphs hard?

- Complete ℓ-partite graphs, for $\ell<2 \log n$, not hard!
- Not even for regular resolution, upper bound $2^{O(\ell)} \cdot n^{O(1)}$

For regular resolution:

- Rich extensions property

- Small error sets property: any large set of vertices "almost" has rich extension property, i.e., not many "error cliques" with few extensions

What makes random graphs hard?

For unary Sherali-Adams:

* Rich extensions property

B Small error sets property
B Also need to analyse Fourier characters!

- Much more complicated (pseudo-calibration)
- Not combinatorial
* We will get back to this later

Planted k-colouring

- Erdős-Rényi random graph: $G \sim \mathscr{G}(n, d / n)$
- or d-regular random graph: $G \sim \mathscr{G}_{n, d}$ where $d \geq 2 k \ln k-\ln k$
- Planted k-colouring: $G \sim \mathscr{G}_{k}(n, d / n)$ or $G \sim \mathscr{G}_{n, d, k}$
fix k-colouring and sample graph respecting colouring

Polynomial time algorithm that distinguishes?
Refutation: Given $G \sim \mathscr{G}(n, d / n)$ prove no k-colouring

Complexity of colouring

Can we colour G with k colours without monochromatic edges?

* k-colouring is NP-hard for $k \geq 3$ [Karp'72]
* Appears to be hard on average for $G \sim \mathscr{G}_{n, d}$ or $G \sim \mathscr{G}(n, d / n)$, where $d \approx 2 k \ln k$
* No known average-case reduction from planted clique
* Approximating $\chi(G)$ is hard [..., Zuckerman '07]
- Worst-case / average-case complexity of colouring? [Beame, Culberson, Mitchell, Moore 'os]

Complexity of colouring random graphs

Algorithms solving colouring for $G \sim \mathscr{G}_{n, d}$ or $G \sim \mathscr{G}(n, d / n)$:

- McDiarmid calculus '84: captured by resolution [Beame, Culberson, Mitchell, Moore 'os]
* Algebraic methods: captured by Nullstellensatz and polynomial calculus
* Lovász theta function: captured by SoS [Banks, Kleinberg, Moore '17]

Simplified summary

	k-clique	k-coloring		3-SAT	3-XOR
Tree-like Resolution	HARD [Beyersdorff, Galesi, Lauria '11]	HARD [Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\left.\exp \left(n / \Delta^{1+\epsilon}\right)\right) \quad \Delta=m / n$		
Resolution	OPEN Some partial results ${ }^{(1)}$		HARD [Chvátal, Szemerédi ' 88] $\exp \left(n / \Delta^{2+\epsilon}\right)$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]		
Polynomial	OPEN	HARD [Conneryd, dR, Nordström, Pang, Risse '23]	$\mathbb{F} \neq 2$ HARD [Ben-Sasson, Impagliazzo '99]		
			$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY
Sherali- Adams	OPEN Some partial results ${ }^{(2)}$	OPEN	HARD [Grigoriev '01, Schoenebeck '08]		
Sum of Squares	OPEN Some partial results ${ }^{(3)}$ $\mathcal{G}(n, 1 / 2)$: degree $=\Theta(\log n)$	OPEN [Kothari, Manohar '21] $\mathcal{G}(n, 1 / 2): d \geq \Omega(\log n)$			
Cutting Planes	OPEN	OPEN	[Flem Robere	OPEN $\Theta(\log n)$-SAT ing, Pankratov, Pitassi, '17] [Hrubeš, Pudlák '17]	Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]

[^0]
Back to planted clique

Clique formula Clique (G, k)

- Block encoding

Variables: x_{v} for every vertex v
Clauses:

$$
\begin{aligned}
& \sum_{v \in V_{i}} x_{v}=1 \text { for each block } V_{i} \\
& x_{v} x_{u}=0 \text { non-edge }(u, v) \notin E(G)
\end{aligned}
$$

How to prove uSA size lower bounds

- Unary Sherali-Adams refutation

$$
\sum_{i} p_{i} q_{i}+\sum_{j}^{ \pm 1 \text { coefficients }} c_{j} r_{j}^{\prime}=-M
$$

* "Pseudo-measure" μ mapping polynomials to \mathbb{R}, linear

$$
\begin{aligned}
& \text { ロ } \delta \leq \mu\left(p_{i} q_{i}\right) \leq \delta \\
& \mu\left(r_{j}\right) \geq-\delta
\end{aligned}
$$

*Size lower bound: $\mu(1) / \delta$
should be defined for all polynomials (not only bounded degree!)
μ defined on monomials and extended linearly to polynomials
(μ is the dual object for linear system with objective minimize sum of coefficients)

Clique formula Clique (G, k)

B Block encoding

Variables: x_{v} for every vertex v
Clauses:

$$
\begin{aligned}
& \sum_{v \in V_{i}} x_{v}=1 \text { for each block } V_{i} \\
& x_{v} x_{u}=0 \text { non-edge }(u, v) \notin E(G)
\end{aligned}
$$

- Monomial $=$ rectangle Q
- Set of k-tuples ruled out as candidate k-clique
- k-dimensional hypercube
- Cartesian product of $Q_{i} \subseteq V_{i}$

Pseudo-measure is a measure of progress

* Measure we define satisfies much more: captures progress
* How much progress does a monomial/rectangle Q represent?

* Axioms should represent small progress
* Set of all tuples should represent complete progress
* For general Q ? The smallest derivation of Q

Min \# of axioms needed to derive Q (between 1 and n^{2}) - useful for degree/ width lower bound

Expected behavior of a progress measure

- Axioms ≈ 0

* Large rectangle progress \approx size of rectangle (Large then should behave "random" / as expected)

- If rectangle contains small blocks? Depends...

Decomposition of rectangles

$Q=\{$ rectangles at leaves $\}$ is a partition of Q can analyse if blocks with only 1 vertex are axioms or are interesting

Decomposition of rectangles

- Given rectangle Q : partition Q into family of rectangles \mathbb{Q} s.t. $\forall R \in \mathbb{Q}$:
- Either R is an axiom (or contained in an axiom)

$$
\mu(\text { axioms }) \approx 0
$$

\square Or R is a clique on small blocks + large blocks (good rectangles)

$$
\mu(\operatorname{good} R) \approx|R|
$$

- Or R is so small, it represents negligible progress $\mu($ small $R) \lesssim$ negligible
* Want to define μ that satisfies this and also additivity

$$
\mu(Q)=\sum_{R \in \mathscr{Q}} \mu(R)
$$

Defining the measure (failed attempts)

- Size of rectangle: $\mu_{1}(Q)=|Q|$ Fails on axioms
- Progress is to rule out cliques: $\mu_{2}(Q)=\{\# k$-cliques in $Q\}$ Fails on whole space
- Let's rewrite failed attempts

$$
\chi_{e}(G[t])= \begin{cases}1 & \text { if } e \in G[t] \\ -1 & \text { if } e \notin G[t]\end{cases}
$$

- For $E \subseteq\binom{t}{2}$, we have $\chi_{E}(G[t])=\prod_{e \in E} \chi_{e}(G[t])$

$$
\mathbf{1}_{t \text { is a cique }}=\sum_{E \subseteq\left(\frac{1}{2}\right)} \chi_{E}(G[t]) \cdot 2^{-\left(\frac{k}{2}\right)}
$$

$$
\chi_{\varnothing}(G[t])=
$$

Potential edge e

$$
\mu_{2}(Q)=\sum_{t \in Q} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G[t]) \cdot 2^{-\binom{k}{2}}
$$

$$
\mu_{1}(Q)=\sum_{t \in Q} \chi_{\varnothing}(G[t])
$$

Defining the measure (successful attempt)

- Choose $d=\varepsilon \cdot \omega(G)$

$$
\begin{gathered}
\mu_{2}(Q)=\sum_{t \in Q} \sum_{E \subseteq\binom{t}{2}} \chi_{E}(G[t]) \cdot 2^{-\binom{k}{2}} \mu_{1}(Q)=\sum_{t \in Q} \chi_{\varnothing}(G[t]) \\
\mu(Q)=n^{-k} \sum_{t \in Q} \sum_{\substack{E \subseteq\left(\begin{array}{l}
t \\
2
\end{array}\right) \\
\operatorname{vc}(E) \leq d}} \chi_{E}(G[t])
\end{gathered}
$$

Defining the measure (successful attempt)

* Choose $d=\varepsilon \cdot \omega(G)$
- Clearly additive!

Definition of measure:

$$
\mu(Q)=n^{-k} \sum_{t \in Q} \sum_{\substack{E \subseteq\left(\begin{array}{l}
t \\
2
\end{array}\right) \\
\mathrm{vc}(E) \leq d}} \chi_{E}(G[t])
$$

* Note that if $E \neq \varnothing$, then $\mathbb{E}\left[\chi_{E}(G[t])\right]=0$
- In expectation, measure satisfies:

$$
\mu(\text { axiom })=n^{-k} \sum_{t \in Q} \sum_{\substack{E \subseteq\left(\begin{array}{l}
t \\
2
\end{array}\right), \mathrm{vc}(E)=d \\
\operatorname{vc}(E \cup\{e\})=d+1}} \chi_{E}(G[t])
$$

- Whole space has measure 1
- Rectangle Q has measure $|Q| / n^{k}$
- Axioms (conditioned on non-edge $e=(u, v)$) has measure 0
- "Just" need to show concentration... (There are $2^{k n}$ rectangles)

Well-behaved graphs (property of random G)

1. Rich extension property:
all small tuples have many common neighbours on every block
2. Small error sets (similar to "clique-denseness" from [ABdRLNR '18], but more natural :)

B Q has common neighbourhoods of expected size if: all small tuples have expected \# of common neighbours in every block of Q

- For all large Q, \exists small $S \subseteq V$ s.t. $Q \backslash S$ has common neighbourhoods of expected size

Well-behaved graphs (property of random G)

3. Bounded character sum for every edge set E in class (simplified** version):

$$
\left|\sum \chi_{E}(G[t])\right| \leq|Q| n^{-\varepsilon \cdot v \mathrm{vc}(E)}
$$

We rely on a notion related to vertex-cover Kernels as used in FPT algorithms
View E as subset of $\binom{[k]}{2}$ mapped onto $G[t]$

$$
\mu(Q)=n^{-k} \sum_{t \in Q} \chi_{\varnothing}(G[t])+n^{-k} \sum_{t \in Q} \sum_{\substack{E \subseteq\left(\begin{array}{c}
t \\
2
\end{array}\right), E \neq \varnothing \\
\operatorname{vc}(E) \leq d}} \chi_{E}(G[t]) \approx\left(1-n^{-\varepsilon}\right) \frac{|Q|}{n^{k}}
$$

- Step 1: Prove that random graphs are whp well-behaved
* Step 2: Prove that clique is hard for uSA on well-behaved graphs

Random graphs have bounded character sums

- Simplified statement

$$
\left|\sum_{t \in Q} \chi_{E}(G[t])\right| \leq|Q| n^{-\varepsilon \cdot v c(E)}
$$

Very many rectangles Q

- Markov inequality:

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\sum_{t \in Q} \chi_{E}(G[t])\right|>s\right] \leq \frac{\mathbb{E}\left[\left(\sum_{t \in Q} \chi_{E}(G[t])\right)^{m}\right]}{s^{m}} \\
& \mathbb{E}\left[\left(\sum_{t \in Q} \chi_{E}(G[t])\right)^{m}\right]=\sum_{t_{1}, \ldots, t_{m} \in Q} \mathbb{E}\left[\prod_{i \in[m]} \chi_{E}\left(G\left[t_{i}\right]\right)\right] \\
& \leq \sum_{t_{1}, \ldots, t_{m} \in Q} \mid \mathbb{E}\left[\prod_{i \in[m]} \chi_{E}\left(G\left[t_{i}\right]\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { If some } \chi_{e}\left(G\left[t_{i}\right]\right) \text { appears only once in } \prod_{i \in[m]} \chi_{E}\left(G\left[t_{i}\right]\right) \\
& \text { then } \mathbb{E}\left[\prod_{i \in[m]} \chi_{E}\left(G\left[t_{i}\right]\right)\right]=0
\end{aligned}
$$

Note: E has a matching M of size $\geq \operatorname{vc}(E) / 2$

Planted clique

- Some take aways:
- Discover properties of random graphs that imply hardness
- We build on previous properties (tree-like resolution, regular resolution, unary SheraliAdams)
- Lower bound for unary Sherali-Adams essentially independent of encoding
- Probably useful: progress measure, decomposition of rectangles
- Open problems:
- Size lower bounds for other proof systems: Resolution, SA, NS over \mathbb{F}_{p}, SoS, ...
- Improve result for planted clique of size \sqrt{n} (regular resolution, uSA)
- Combinatorial description of "bounded character sums" property? Of μ ?

Final remarks

* Average-case hardness in proof complexity
- Lower bound for classes of algorithms
- Candidate hard-instances
- Guide us to understand properties that make instances hard
- Open problems:
- Upper bounds for different thresholds (e.g., colouring)
* Lower bounds for other proof systems and other problems (e.g., MCSP)
* Average-case reduction within a proof system?

More open problems

	k-clique	k-coloring		3-SAT	3-XOR
Tree-like Resolution	HARD [Beyersdorff, Galesi, Lauria '11]	HARD [Beame, Culberson, Mitchell, Moore '05]	HARD [Chvátal, Szemerédi '88] Improved [Ben-Sasson, Galesi '01] (size $\left.\exp \left(n / \Delta^{1+\epsilon}\right)\right) \quad \Delta=m / n$		
Resolution	OPEN Some partial results ${ }^{(1)}$		HARD [Chvátal, Szemerédi '88] $\exp \left(n / \Delta^{2+\epsilon}\right)$ Improved [Beame, Karp, Pitassi, Saks '98], [Ben-Sasson '01]		
Polynomial	OPEN	HARD	$\mathbb{F} \neq 2$	HARD [Ben-	sson, Impagliazzo '99]
		Nordström, Pang, Risse '23]	$\mathbb{F}=2$	HARD [Alekhnovich, Razborov '01]	EASY
Sherali- Adams	OPEN Some partial results ${ }^{(2)}$	OPEN	HARD [Grigoriev '01, Schoenebeck '08]		
Sum of Squares	OPEN Some partial results ${ }^{(3)}$ $\mathcal{G}(n, 1 / 2)$: degree $=\Theta(\log n)$	OPEN [Kothari, Manohar '21] $\mathcal{G}(n, 1 / 2): d \geq \Omega(\log n)$			
Cutting Planes	OPEN	OPEN	[Fle Rober	OPEN $\Theta(\log n)$-SAT ing, Pankratov, Pitassi, '17] [Hrubeš, Pudlák '17]	Quasi-poly EASY [Fleming, Göös, Impagliazzo, Pitassi, Robere, Tan, Wigderson '21] [Dadush, Tiwari '20]

[^1]
[^0]: ${ }^{(1)}$ [Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13]
 (2) [dR, Potechin, Risse '23]
 ${ }^{(3)}$ [Meka, Potechin, Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16], [Pang '21]

[^1]: ${ }^{(1)}$ [Beame, Impagliazzo, Sabharwal '01], [Pang '21], [Atserias, Bonacina, dR, Lauria, Nordström, Razborov '18], [Lauria, Pudlák, Rödl, Thapen '13]
 (2) [dR, Potechin, Risse '23]
 ${ }^{(3)}$ [Meka, Potechin, Wigderson '15], ..., [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16], [Pang '21]

