
What do tautologies know about their poofs?

Jan Kraj́ıček

Charles University

FOCS’21 workshop, 8.February 2022

1 / 24

The Cook-Reckhow definition

A propositional proof system (abbreviated pps) is a p-time function whose
range is exactly TAUT, the set of propositional tautologies:

P : {0, 1}∗ →onto TAUT .

Fundamental problem

Is NP closed under complementation? Equivalently, is there a pps P such
that the length-of-proofs function

sP(τ) := min{|w | | P(w) = τ}

is bounded by |τ |O(1)?

2 / 24

Holly grail

Prove super-polynomial lower bounds for sP for P as strong as possible.

But why?

If we manage to prove such lower bounds
for some but not all pps

does it have any significance at all?

Fact

No super-poly lower bounds for sP are known for the usual text-book
calculus based on modus ponens and a finite nb. of axiom schemes (a
Frege system in the established terminology).

3 / 24

We may be lucky and prove a super-poly sP lower bound for optimal P:

sP has at most poly slowdown w.r.t. any other sQ ,

or even for a p-optimal P:

proofs in any Q can be translated in p-time to P-proofs.

Then super-poly lower bounds follow for all sQ and NP 6= coNP.

But we do not know if such a pps exists.

The optimality problem

Is there a p-optimal, or at least an optimal, pps?

This problem relates to a surprisingly varied areas: structural complexity
th. (disjoint NP sets, sparse complete sets, ...), finite model th.,
quantitative Gödel’s thms, games on graphs,

4 / 24

Even if we are not lucky and P is not optimal, a super-poly lower bound
for sP does have, in fact, at least two interesting consequences.

sp-lower-bound consequence 1

No SAT algorithm from a class Alg(P) of SAT algorithms attached to P
runs in p-time.

AlgP : alg’s whose soundness have short proofs in P
[soundness relates to simulation]

Ex. Alg(Fd) contains commonly considered enhancements of DPLL (even
for small d)

Fact

Virtually all SAT alg’s considered at present are contained in Alg(P) for
some P for which we have super-poly sP lower bounds.

5 / 24

sp-lower-bound consequence 2

P 6= NP is consistent with a FO theory TP associated with P: there is a
model of TP in which all p-time clocked alg’s fail to solve SAT.

TP : some base theory plus a universal statement expressing the soundness
of P

Ex. TER is Cook’s theory PV and it proves a significant part of complexity
theory (e.g. the PCP theorem). In particular, a significant part of
complexity theory holds in any model of TER .

Fact:

TP cannot prove lower bounds for any pps Q stronger than P (in terms of
a p-simulation).

6 / 24

A change of perspective:

do not ask about the size of proofs but how hard it is to find them.

The Fundamental problem becomes the P vs. NP problem and the
Optimality problem translates into

Proof search problem (informal)

Is there an optimal way to search for propositional proofs?

Definition

A proof search algorithm is a pair (A,P) where P is a pps and A is a
deterministic algorithm that stops on all inputs and finds P-proofs for all
tautologies:

P(A(τ)) = τ ,

all τ ∈ TAUT .

7 / 24

In fact, this problem can be ”clarified”.

Lemma

For any fixed pps P there is AP such that (AP ,P) is time-optimal among
all (B,P): for all τ

timeA(τ) ≤ timeB(τ)O(1) .

Theorem

For any sufficiently strong (essentially just containing resolution R) pps P:
P is p-optimal iff (AP ,P) is time-optimal among all proof search
algorithms (B,Q).

Hence the optimal proof search problem reduces to the original
p-optimality problem .

8 / 24

A motivation for the notion coming next:

The quasi-ordering of proof search alg’s by time does not seem quite
right and it lead me to consider how to measure the hardness of
searching for a proof of an individual formula: the measure should
apply to an individual formula (similarly as sP does) and not to an
asymptotic behavior of an algorithm.

Eventually this lead to an alternative quasi-ordering for which, however,
the optimality has the same answer: it is just the p-optimality problem.

But the resulting notion seems to be of an independent interest.

9 / 24

Definition

For a pps P, the information efficiency function is defined as:

iP(τ) := min{Kt(π|τ) | P(π) = τ} .

Kt: Levin’s time-bounded Kolmogorov complexity:

Kt(w |u) := min{|e|+ dlog te | {e} computes w from u in time ≤ t}

Observation

For P whose proofs are not shorter than the formula being proved and
which allows to simulate efficiently the truth-table proof:

log |τ | ≤ log sP(τ) ≤ iP(τ) ≤ |τ | .

10 / 24

information and time

Lemma 1

Let (A,P) be any proof search algorithm. Then for all τ ∈ TAUT :

iP(τ) ≤ Kt(A(τ)|τ) ≤ |A|+ log(timeA(τ)) .

In particular, timeA(τ) ≥ Ω(2iP(τ)).

Lemma 2

For every proof system P there is an algorithm BP such that for all
τ ∈ TAUT :

Kt(BP(τ)|τ) = iP(τ)

and
timeBP

(τ) ≤ 2O(iP(τ)) .

[In fact, AP ∼time BP .]

11 / 24

As always
iP(τ) ≥ log sP(τ) ,

a super-poly sP -lower-bound implies a super-log lower bound for iP .
Does such a lower bound for iP :

iP(τ) ≥ ω(log |τ |)

alone imply anything interesting?

Fact

Assuming a super-logarithmic lower bound for iP the same two
consequences as before follow:

No SAT algorithm from a class Alg(P) runs in p-time.

P 6= NP is consistent with theory TP .

12 / 24

Problem

Prove an unconditional lower bound

iP(τ) ≥ ω(log |τ |))

for some proof system P for which no super-polynomial lower bounds for
sP are known.

It is possible to formulate various weaker versions of the problem but the
emphasis should always be on the qualification unconditional.

Is it easier to prove iP lower bounds than to prove sP lower bounds?

Various plausible hypotheses (e.g. P 6= NP or RSA is secure) imply that
for many P (except some trivial ones):

iP(τ) ≥ ω(log sP(τ)) .

I.e. super-log lower bounds for iP do not imply, in general, super-poly
lower bounds for sP(keyword: automatizability).

13 / 24

notation/terminology

The main parameter is m := |τ | and we call a quantity

small or large iff it is O(log m) or ω(log m), resp.,

and a string (of any length) simple or complex iff its Kt-complexity is
small or large, resp.

X ⊆ TAUT solves the problem iff

X is a set of formulas of unbounded size,

iP(τ) ≥ ω(log m) for τ ∈ X , m >> 1.

Remark

As we aim at unconditional lower bound we ought to expect that formulas
from X require super-poly size as well (although we may not be able to
prove that).

14 / 24

Necessary condition (N)

If X solves the problem then all P-proofs of τ ∈ X have to be complex.

Prf.:
iP(τ) ≤ Kt(π|τ) ≤ Kt(π)

�

Sufficient condition (S)

If X satisfies (N) and all τ ∈ X are simple then X solves the problem.

Prf.:
Kt(π) ≤ Kt(τ) + Kt(π|τ) + log -terms

and so
Kt(π|τ) ≥ ω(log m)− O(log m) = ω(log m) .

�

15 / 24

The heart of (S) can be reformulated so that, in principle, it applies to
complex formulas as well.

Sufficient condition (S’)

If X satisfies (N) and for all τ ∈ X and for all P-proofs π of τ :

It(τ : π) := Kt(π)− Kt(π|τ) is small

the X solves the problem.

This quantity, defined by Kolmogorov, was by him interpreted as

information that τ conveys about π.

An informal summary

We look for X ⊆ TAUT consisting of formulas that have only complex
proofs but that convey little information about them.

16 / 24

There are two classes of candidate hard formulas supported by some
theory:
- reflection formulas,
- proof complexity generators.

Reflection formulas

〈RefQ〉m
express that all formulas with a Q-proof of size ≤ m are tautologies.

Facts:
- uniform (and hence simple),
- probably too general to be useful for unconditional lower bounds,
- in principle, (S) can be used.

17 / 24

Proof complexity generators

Given a p-time function g extending n bits to m = m(n) > n bits

gn : {0, 1}n → {0, 1}m

each b ∈ {0, 1}m \ Rng(gn) defines formula

τ(g)b(x , y) := gn(x) 6= b .

Facts:
- non-uniform (possibly all complex),
- hard for all pps’ for which lower bounds are known,
- (S’) needs to be used in place of (S), i.e.

first we need to understand the quantity It(τ : π).

18 / 24

Ex.: Let f : {0, 1}` × {0, 1}k → {0, 1}k+1 is any p-time function.

Gadget generator

Function Gadf : {0, 1}n → {0, 1}n+1, where n := ` + k(` + 1), takes as an
input an n-string that it interprets as (` + 2)-tuple

(v , u1, . . . , u`+1)

where: |v | = `, |ui | = k, all i ≤ ` + 1, and outputs

(w1, . . . ,w `+1)

where w i := f (v , ui), all i ≤ ` + 1.

W.l.o.g. v is a circuit sending k bits to k + 1 bits and f is circuit
evaluation and ` ≤ k2. Such Gad is universal is a good sense.

19 / 24

The truth-table function sends a circuit C (x1, . . . , xk) in k variables to its
truth-table tt(C), the string of all 2k values ordered lexicographically.

For w any string define its circuit-size

CSize(w) := min{|C | | tt(C) = w ′}

where w ′ is w extended by zeros so that the length of w ′ is a power of 2.

Observation

Kt(w) ≤ CSize(w) + log(|w |) + O(1) .

Remark:
Allender et.al., Power from Random Strings, 2006, characterize Kt(w) as
circuit size in a more general model of circuits (may use oracle for a set in
E).

20 / 24

Theorem

For any pps P:

1 either P is not p-bounded, i.e. there are super-poly lower bounds for
sP and hence super-log lower bounds for iP ,

2 or there are simple formulas τ , |τ | = m and CSize(τ) = O(log m)
(and hence Kt(τ) ≤ O(log m) too), such that no P-proof π of τ has
small, i.e. O(log m), circuit size.
(In fact, CSize(π) ≥ mδ for a fixed constant δ > 0.)

The proof modifies the proof of Thm.2.1 in
J.K., Diagonalization in proof complexity, Fundamenta Mathematicae,
182, pp.181-192, (2004).

[I do not think it can be generalized further to Kt instead of CSize.]

21 / 24

proof idea

P: any pps

S : base FO theory plus an axiom stating that anything P proves, even
implicitly, is valid

N: dyadic numeral for N, |N| ∼ log N

Gödel’s diagonal lemma

There is an FO formula A(x) such that S proves that for all N ≥ 1:

A(N) ⇔ [A(N) has no S-proof of size ≤ N] .

Note: |A(N)| = O(log N).

22 / 24

proof idea cont’d

Assuming both (1) and (2) in the thm fail we construct a (log N)O(1) size
S-proof of A(N) and reach a contradiction as follows:

Translate A(N) into a big tautology ||A||N of size O(N). It is uniform
a there is a O(log N) size C s.t. tt(C) = ||A||N .

Assuming (2) fails there is a O(log N) size D s.t. tt(D) is a P-proof
of ||A||N .

The fact that D describes a P-proof of tt(C) can be expressed by a
O(log N) size tautology σC ,D .

Assuming (1) fails, this fla has a size (log N)O(1) P-proof π.

Using the special axiom of S we derive that A(N) is true.

Total size is (log N)O(1) << N: a contradiction!

23 / 24

references

J.K., Information in propositional proofs and algorithmic proof search,
J.Symbolic Logic, to appear,

[available from my web page]

J.K., Proof Complexity, (2019), CUP

[for all proof background mentioned]

24 / 24

JK
Zvýraznění
proof complexity

