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Starting Point: Lifting Theorems

 Recent explosion of lifting theorems in query and communication complexity

Decision Tree Communication Protocol

Protocol simulates Tree

For “complex” g
f:{0,1}" - {0,1} this is best strategy! fog": X"XY" - {0,1)

g: XXY— {0,1}isa“complex gadget”



Lifting Theorems and Proof Complexity

 Many new results in proof and circuit complexity using lifting theorems

[GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]

* The proofs of these results place total search problems at center stage!

1. The False Clause Search Problem Search(F’) for unsatisfiable CNF F

2. The Karchmer-Wigderson Game KW( f) for boolean functions f

* To apply techniques, need query models that capture proof systems,
communication models that capture circuit classes.

* Recent work ((GKRS18] building on [BCEIP98], closely related to [BK94, K94, ...

suggested using TNFP classes as a guide to find these models.



Proof C

This talk




Goal for Today

e Jell two stories:

 The False Clause Search Problem and Proof Complexity

 The Karchmer-Wigderson Games and Circuit Complexity

* These are “two pieces” of a bigger theory of query/comm. TFNP

* QOutline a research program using T FNP as a guide to capture proof
systems and circuit classes.

* (Close thematic links with Sam’s and Neil’s talks earlier.)



Part 1

Proofs and the False Clause Search Problem



False Clause Search Problem

* Focus on complexity of refuting unsatisfiable CNF formulas
F:C1/\C2/\"'/\Cm
 Each C; is a clause (disjunction of boolean literals)

e [* has an associated total search problem:

Search(F) C {0,1}" X [m]
Given x € {0,1}", find i € [m] such that C(x) = 0.

* Query Complexity of Search(F’) = Proof Complexity of F



Resolution Proofs

. e

* Lines are clauses. 7 Ra

* New lines deduced using T X
/NN

* ResolutionRule: CVx,DVxF CVD KV Ry Ry X3 N X4

* Length: Number of lines. B / \
Xg\\/ Xg 7(9\

* Depth: Length of longest path. / F\

* Proof is tree-like if each clause is X, X,V Xq N Xa

used at most once.

_ Example. F =X, AX AX; VX VX)A XV X)) A (X2 VXy)
» Input clauses can be copied any number LR TR T e

_ Length: 10, Depth: 4
of times



Resolution Proofs

Lines are clauses.

New lines deduced using
 ResolutionRule:CVx,DVvxkECVD
Length: Number of lines.

Depth: Length of longest path.

Proof Is tree-like If each clause Is
used at most once.

* |nput clauses can be copied any number
of times

Xy N X2, Ky Xy VXy Xy
Xl K\V)—(’Q—\[ XS X[ Rl\(i—'l_\! X'_’;

Example. F = X1 N Xr A\ ()_Cl \Y .Y2 V .X3) N (373 V X4) /AN ()_63 V .Y4)
Length: 10, Depth: 4



Decision Trees for Search(F)

e Size: Number of nhodes
Search(F) C {0,1}" X [m]

Given x € {0,1}", find i € [m] such that C(x) = 0.

* Depth: Length of longest path

* Given boolean assignment,
follow unigue path consistent
with that assignment, output
violated clause.

A | .—)Z] \Y 7(9\ _X—;L\’ 7(3 -;(3
» Decision tree for Search(F) is related to
the DPLL method for solving SAT. F=x AX VX)) AKXV x)AX;



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

PNy YN
AN PN

X]\IXJL X \/7(3 X‘ ’;(—]\/)(9\ 73-\/)(3 ;{3

F=X1/\()_CIVX2)/\()_CZ\/X3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

Query resolved variable

NN

Xy VKg X. )N Kq,

F=X1/\()_61Vx2)/\()_CZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

/< \ /t *\

X,V Xy, X N Ko Assignment falsifies clause

F=X1/\()_61Vx2)/\()_CZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

/C \ /( ”>\ Invariant:

X,V Xy, X N Ko Assignment falsifies clause

F=X1/\()_61Vx2)/\()_CZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

A
/‘\XQ_>\
Xa_

Query resolved variable

| . o

F=X1/\()_61Vx2)/\()_CZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

PNy
AN

X]\’X;L )( \/?(3

F=X1/\()_CIVX2)/\()_CZ\/X3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

PNy YN
AN PN

X]\IXJL X \/7(3 X‘ ’;(—]\/)(9\ 73-\/)(3 ;{3

F=X1/\()_CIVX2)/\()_CZ\/X3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

A Variable Resolved = Variable Queried
/\M (%a)
/C \ /[ S\ :

X]\/XG'L X \/X'b X‘ ?]VXJ\ -)?L\/)(3 ;{3

F:xl/\()_ClV.Xz)/\(XZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

'L Partial assignment falsifies
‘ corresponding clause
O ) &

X]\/X;L X \/X'b x‘ ’;(—]\/)(9\ -)_(-;L\/)(3 _723

F=X1/\()_CIV)C2)/\()TZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)
'L Partial assignment falsifies
corresponding clause
O 1
AL
Xa Ka

s

F=X1/\()_CIV)C2)/\()TZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for Search(F’)

L Reverse Direction Also Works! @
O 1
/\ Xl>\
/C \ /[ S\ O A §

X VKL XN K X XoVKL K NRy R

F:xl/\()_ClV.Xz)/\(XZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Theorem. Let I be an unsatisfiable CNF formula. Then

Size < s, depth < d Tree-like Res. refutation of F
If and only if

Size < s, depth < d Decision Tree for Search(F’)

Correspondence is stronger: essentially the same object!



Total Search Problems in Query Complexity
 Let O be finite, & C {0,1}" X O.
e (x):={o€ 0 : (x,0) € &} is set of feasible solutions for x.

» & is a total search problem if Vx : §(x) # &

. FPY(&) := Query Complexity of §
:= Depth of shallowest decision tree solving &

. FP¥" := All total search problems & such that

FPY(S) = 1og?D(n)



Query TFNP

» A certificate of & is a partial restriction p € {0,1,*}" s.t.
do € O, Vx € {0,1}" consistent with p: 0 € &'(x)

A certificate cover of & is a set of certificates R such that every
x € {0,1}"is consistent with some p € R.

TFNPdt(cS’) = min max |fixed(p)]
R cover peR

» NP Algorithm: Given x € {0,1}",
e Non-deterministically guess p € R,

» Verify x is consistent by querying fixed coordinates in p



Query TFNP

» A certificate of & is a partial restriction p € {0,1,*}" s.t.
do € O, Vx € {0,1}" consistent with p: 0 € &'(x)

A certificate cover of & is a set of certificates R such that every
x € {0,1}"is consistent with some p € R.

TFNPdt(cS’) = min max |fixed(p)]
R cover peR

« TENP? := all total search problems & with

TFNPY(S) = 10og®D n



What’s So Special About Search(F)?

» Forunsat. F = C; A C, A --- A C,, clauses are certificates:

. TEFNP¥(Search(F)) < width(F)

* Any total & can be reduced to solving Search(F’) for some F-

. Given & and certificate cover R, define Fj := ApeR Cﬁ where Cﬁ s the

maximum-width clause falsified by p.

» Solving Search(F) gives a certificate for & which then lets us solve &'.
Converse also holds, under reasonable assumptions.



Summary

» Any unsatisfiable CNF F has an associated Search(F)

» Decision trees for Search(F’) = Tree-Res. refutations of F

« Search(F) is complete* for TFN pat

Can we capture other proof systems?



Part 2

Circuits and the Karchmer-Wigderson Game



Karchmer-Wigderson Games

» Focus on complexity of boolean functions f: {0,1}" — {0,1}

+ f monotone if x < y (coordinate-wise) implies f(x) < f(y)

e fispartialif f:{0,1}" — {0,1,*}, * means we “don’t care”.

* f has an associated total search problem [KW 90]

KW(f) C (1) xf1(0) X [n]
Given Xx Ef_l(l),y Ef_l(()), find 1 € [n] such that x; # v,

e Circuit Complexity of f = Communication Complexity of KW( )



Karchmer-Wigderson Games

» Focus on complexity of boolean functions f: {0,1}" — {0,1}
» f monotone if x < y (coordinate-wise) implies f(x) < f(y)

e fispartialif f:{0,1}" — {0,1,*}, * means we “don’t care”.
* f has an associated total search problem [KW 90]

e If f is monotone, then there is a more restricted game:

mKW(f) € f~'(1) x f~1(0) x [n]
Givenx € f~1(1),y € f~1(0), find i € [n] such that X; >y

e Circuit Complexity of f = Communication Complexity of KW( )



Boolean Circuits

* Device to compute boolean functions

o Starting® from boolean literals, use A and V
gates to compute a target function.

o Size := Number of gates

 Depth := Length of longest root-leaf path

e Circult is a formula if no gate re-used. e A

* These are technically DeMorgan circuits, but are polynomially equivalent to standard boolean circuits.



Boolean Circuits

* Device to compute boolean functions

o Starting® from boolean literals, use A and V 0o
gates to compute a target function.

o Size := Number of gates

 Depth := Length of longest root-leaf path

* Circuit is a formula if no gate re-used.

* These are technically DeMorgan circuits, but are polynomially equivalent to standard boolean circuits.



Communication Protocols for KW(f)

 [wo players, Alice and Bob KW(F) C F1(1) x f~1(0) x [n]

Given x Ef_l(l),y Ef_l(O), find i € [n] such that x; # y;

e A. —xef(1),B. «yef 0

 Communicate by sending bits over a S N
channel, goalistofind 1 : x; # y; : — 9

N Ance\ . Bob
* Protocol: Tree telling Alice and Bob who l

speaks at each point. xef (1) (x,y,0) € KW()  yef0)




Communication Protocols for KW(f)

Two players, Alice and Bob
A. —xefi(1),B. «yef Lo

Communicate by sending bits over a
channel, goalisto find 1 : x; # y;

Protocol: Tree telling Alice and Bob who
speaks at each point.

Depth := Length of longest path

Size := Number of nodes in tree

KW(f) € f~1(1) x f71(0) X [n]
Given x € f~1(1),y € f~1(0), find i € [n] such that X, F Y

: g
FoW

O 1
O 1§ O 1
1 2 3 2



Combinatorial Rectangles

* A combinatorial rectangle In KW(f) € £~1(1) x.£~1(0) X [n]
: Given x € f~1(1),y € f~1(0), find i € [n] such that L FE Y
U X Vis a set of the form ’ ’ 0 nre

AXBCUXYV - o . 4

1

forAC U, BCYV.

O
* The set of inputs reaching a node o o
O 1§ O 1

In a protocol Is a combinatorial
rectangle! 1



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

i I
O 1
O L O 1
X Xa, Ko, Ky 1 9

2 &

f= (xl /\Xz)V.X3 VX4



R (1.1.0.0)

Formulas = Communication ® . (0.1.00)

Boolean Formula for f Protocol for KW(f)
1
0

1 0

0 0

Ay %3 Ky Ry

1 1 0 0

0 1 0 0

f= (xl /\Xz)V.X3 VX4



R (1.1.0.0)

Formulas = Communication ® . 0.1.00)

Boolean Formula for f Protocol for KW(f)

f= (xl /\.XZ)VX3 VX4



BR L (1.1.0.0)

Formulas = Communication ® . 0.1.00)

Boolean Formula for f Protocol for KW(f)

f= (x1 /\)CZ)VX3 V.X4



R (1.1.0.0)

Formulas = Communication ® . 0.1.00)

Boolean Formula for f Protocol for KW(f)
1

2
v
4
.\
v

X, Xa, Xy Ky
1 1 0 0
0 1 0 0

f= (xl /\.XZ)VX3 VX4



BR L (1.1.0.0)

Formulas = Communication ® . 0.1.00)

Boolean Formula for f Protocol for KW(f)
1

2
v
4
.\
v

f
( =3
! -
K "
§
[

Xa Xs, Xy
1 1 0 0
0 1 0 0

f= (xl /\Xz)V.X3 V.X4



R (1.1.0.0)

Formulas = Communication ® . 0.1.00)

Boolean Formula for f Protocol for KW(f)
1
0

1 0

0 0

Ay %3 Ky Ry

1 1 0 0

0 1 0 0

Finished! =A%) VX3V Xy



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

. -

I:h V gates L;h 0 A
ar O 1

O L O 1

f= (xl /\Xz)V.X3 VX4



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

SN
= n

Reverse Direction Also Works!

f= (xl /\Xz)V.X3 VX4



Formulas = Communication

Theorem.
Letf: {0,1}" — {0,1,*} be a partial boolean function. Then

Size < s, depth < d Boolean formula for f
If and only if

Size < s, depth < d communication protocol for KW(f)

Correspondence is stronger: essentially the same object!



Formulas = Communication

Theorem.

Letf: {0,1}" — {0,1,*} be a partial monotone boolean function. Then

Size < s, depth < d monotone Boolean formula for f
If and only if

Size < s, depth < d communication protocol for mKW( f)

Correspondence is stronger: essentially the same object!



Total Search Problems in Communication
e Let X, Y, O be finite, § C X X Y X O.

e S(x,y):={o0€ 0O :(x,y,0) € &} are feasible solutions for (x, y).
« & is a total search problem if V(x,y) : &(x,y) # &

e FP““(&) := Communication Complexity of &
:= Depth of shallowest protocol solving &

« FP““ := All total search problems & such that

FP(S) = log®M(n)



Communication TFNP

A certificate cover of & is a set of rectangles & such that every
(x,y) € X X Yis consistent with some R € &X.

TFNPY(S) := min log | £ |
% cover

« NP Algorithm: Given (x,y) € X X Y,
» Non-deterministically guess R € &£ (log| &£ | bits)

» Verify that (x, y) € R by exchanging 1 bit of communication



What’s So Special About mKW(f)?
e Iff:{0,1}" — {0,1,*} and i € [n] let
X =kxef'):x=1}x{yef10):y =0}

» The set {X. : i € [n]} is a rectangle
cover for mKW(f) o

. TENP(mKW(f)) < log n

()



What’s So Special About mKW(f)?

Fact [R90, GO1]. Every rectangle cover yW=0100 v V
R =1{R,...,R } ofaset U X Vis equivalent to

MKW; for some partial monotone

£:10.1)" = {0,1,%).

Proof. Foreach u € U let x* € {0,1}" be

U
xl.(”)z | u€eR,
Foreach v € Vet y) € {0,1}" be such that
yW=0sveR, Ry R,

Define f(x™) = 1 forallu, f(y") = 0 forall v. UXV



What’s So Special About mKW(f)?

Lesson R,

Any total search problem & € TFNP*
can be reduced to solving mKW( ) for

some partial f : {0,1}" — {0,1,*}. U

(Converse holds, under reasonable assumptions.)

UXV



Summary

e Any f:{0,1}" — {0,1,*} has a Karchmer-Wigderson game
» Comm. Protocols for mMKW( f) = Boolean formulas computing f

« mMKW(f) is complete* for TFNP*

Can we capture other circuit models?



These Stories Are The Same

Bottom-up models (proofs, circuits)
are captured by

Top-down algorithms (decision trees, comm. protocols)

» Search(F') and mKW(f)

* Capture the complexity of these processes

* Are canonical examples of their respective TFNP classes

* We now outline a general theory capturing both of these cases.



Part 3

The In Proof and Circuit
Complexity



Classical Theory of TFNP

* Introduced by Papadimitriou [Pap 94]

 TFNP := Class of NP problems for which a withess always exists.

 Subclasses are defined via polynomial-time reductions to
particular problems.

* Problems often represent theorems used to prove existence results; e.g.
Handshaking Lemma, Fixed-Point Theorems, Sperner’s Lemma, ...

* Vibrant theory with many connections to other fields;

 Game Theory, Cryptography, Combinatorics, Bounded Arithmetic, ...



Example

Handshaking Lemma.

Every graph has an even number of odd-degree nodes.



PPA

Input: Set of nodes V, v, € V, neighbourhood function N(u) C V with | N(u)| < 2.

Feasible Solutions: Let G = (V,E) bes.t. uv € Eiff u € N(v),v € N(u).
.« Vyifdeg(vy) # 1, or

» vE Vifv# vy and deg(v) =1

Vs

V) O




PPA

Input: Set of nodes V, v, € V, neighbourhood function N(u) C V with | N(u)| < 2.

Feasible Solutions: Let G = (V,E) bes.t. uv € Eiff u € N(v),v € N(u).
. vy ifdeg(vy) # 1, or

» vE Vifv# vy and deg(v) =1

» Complexity class PPA contains total search problems reducible to this problem

 Have poly-time Turing Machines N, S such that on input x € {0,1}*

« N(x, u) := Neighbourhood of node u on input x

* S(x, u) := Solution labelling node u on input x

. Given x, get graph G, solve PPA problem on that graph, output solutions



Prominent Subclasses of TFNP

TFNP



Prominent Subclasses of TFNP

TFNP

Guess solution, verify using
~~ neighbourhood functions

PPA



Prominent Subclasses of TFNP

/T N Fi\

PLS PPP PPA
A F'y Fy

PPADS
™.

PPAD

e




Prominent Subclasses of TFNP

TFNP

_ Handshaklng Lemma”
“Every dag has a sink”

PLS PPP PPA
4

/ “Bijective Pigeonhole Principle”

“Pigeonhole Principle”

“Injective Pigeonhole Principle”



Communication and Query TFNP

* We have seen the classes:
. FPY := total & with log®! 1 - depth decision trees (tree resolution)
. TFNP¥ := total & with log®! n - width certificates (narrow unsat. CNFs F)
. FP := total$ with log”! n - depth comm. protocols (boolean formulas)
. TFNP := total & with log”!) n - size rectangle covers (MKW(f))
» Can define other classes by reductions.

 Use either shallow decision trees or shallow communication protocols, rather
than Turing Machines.

* Can characterize other proof systems and circuit classes!



Query PPA

Input: Set of nodes V, v, € V, neighbourhood function N(u) C V with | N(u)| < 2.

Feasible Solutions: Let G = (V,E) bes.t. uv € Eiff u € N(v),v € N(u).
. vy ifdeg(vy) # 1, or

» vE Vifv# vy and deg(v) =1

« Tosolve & C {0,1}" X O, we reduce to above using decision trees:

» N (x) := Decision tree for u, outputs neighbourhood of node u on input x
» 0, € O := Solution of & labelling node u on input x

- Given x, run all decision trees in parallel to get graph G,, solve PPA problem on that

graph, output solutions labelling feasible solutions of G,



Decision trees querying x € {0,1}"
3

S C{0,1}"x 0O



Evaluate all trees, output labels of
feasible solutions

Output 0

S C{0,1}"x 0O



Evaluate all decision trees, output
labels of feasible solutions

On a different input...

Output 0, 0, 0”

S C{0,1}"x 0O



Query PPA

 [BCEIP 98] Observed that if Search(F') & PPA then F has a low-
degree Nullstellensatz refutation over [,

 [GKRS 18] Observed the converse: low-degree Nullstellensatz
implies an efficient reduction to PPA

Theorem. [BCEIP 98, GKRS 18]
Let I be an unsatisfiable CNF. There is a size < s, degree < d I

-Nullstellensatz refutation of F'iff Search(F’) can be depth O(d)

reduced to PPA on s vertices.




Query TFNP Classes

TFNP
“Every dag has a sink” ' 1 '\ }hakmg Lemma”
- PLSY PPP PPAY
A &

A/'
/ “Bijective Pigeonhole Principle”

“Pigeonhole Principle” PPADSdt /

“Injective Pigeonhole Principle”



Query TFNP Classes

TENP
Resolution [BKT 14 '\ F2 Nullstellensatz [BCEIP 98, GKRS 18]
' PLS‘” PPP! PPA‘”
PPADS

PPAD®

e

FPdt < » Tree Resolution




Query TFNP Classes (New Results)

Resolution [BKT 14]

™~

Low-Coeff. Sherali-Adams PLSdt

[HGMPRST 22] ,\:\‘

Reversible Resolution | dt
[HGMPRST 22] > SOPL

PLS A PPAD;”\

PLS% n PPADY

TFNPm

PPP*
1

PPADS%

TN

EOPL%
|

|

PPA‘”
s

PPAD%

/"

[|:2 Nullstellensatz [BCEIP 98, GKRS 18]

Low-Coeff. Z-Nullstellensatz
I[GKRS 18, HGMPRST 22]

/

Reversible Resolution*

FPY <

e [HGMPRST 22]

% Tree Resolution



Query TFNP Classes (New Results)

TENP*
| FINE

Resolution [BKT 14]

Low-Coeff. Sherali-Adams

[HGMPRST 22]
dt
> PPADS
Reversible Resolution / \
= Max-SAT Resolution + » SOPLdr PPA
[HGMPRST 22] /v

PLSY N PPADSdt

EOPL%

Ddt

[, Nullstellensatz [BCEIP 98, GKRS 18]

Low-Coeff. Z-Nullstellensatz
IGKRS 18, HGMPRST 22]

_

Reversible Resolution*

1 <
PLSY n PPAD%

|

» = Max-SAT Resolution*
[HGMPRST 22]

FPdt < » Tree Resolution



Reversible Resolution = Max-SAT Resolution

* Single “reversible” resolution rule:

cCv? CV<?t
C

e From CV ¢, C V ¢ deduce C or vice-versa, clauses are consumed!

Theorem. [HGMPRST 22]

There is a size-s, width-w Reversible Resolution proof of F

If and only if

there is a size sV, width-O(w) Resolution proof and a size-s?'!, degree-O(w)

low-coefficient Sherali-Adams proof.



Communication TFNP
JLENG

Boolean Circuits I, Span Programs [GKRS 18]
[R95, K97, S 17] /

PLS PPPe PPA
2 T $

PPADS

TN

SOPL“ PPAD™

PLS““ n PPADS‘¢

EOPL"

|
PLS“ n PPAD*

|

FPC¢ « » Boolean Formulas [KW 90]




Communication TFNP
JLENG

Boolean Circuits
[R95, K97, S 17]

\
PLS
2

I, Span Programs [GKRS 18]

—

¢ PPP J PPA‘

- ‘5. -. 0 / «
7 PR . psr_ 0 B
Ve - 4 bl S~ .
. 4 L <
: 3 -
/i R
CCY
v 3 a
LN "’ p
R\
VN -
. R g
50 foans B
SV oo

PLS“ n PPADS“*

& EOPL® ;
PLS“ N PPAD

FPC¢ « » Boolean Formulas [KW 90]




Communication TFNP
JLENG

Boolean Circuits
[R95, K97, S 17]

\
PLS*
4

I, Span Programs [GKRS 18]

-

{ PPP“}  PPA“

Should be small-coeff e
Extended Formulations
[FGGR 22]

- il ‘5 R - /.v e
;».' " - S S )
“ A
' ( "( V. >‘»
M % 3
3 Y "’ D
L)
e ——
R o o o AR
S . s

/ PLS n PPADS“
Should be “bounded-

fanout” circuits (comparator/ ‘C - Ny
scatter-free circuits) PLS™ N PPAD

IMS92, F92, S94, DRIip] T

o e, Should be small-coeft.
L PPAD™ 3 «—

> 4 Z-Span Programs [GKRS 18]

po—> o ) D)
. d - CREN . < — &% B
) BC > - RS .
. 4 v . .
)l o <P d
ol S
" \ &

\ P cCC %
v =\
R
3 3 "’ p

L)
Oy
- TP . |
3 > P PR _ -
e o BB P

FPCC <4 » Boolean Formulas [KW 90]




Query TFNP

TFNP”
/'A\

PPPW

EOPLY%

1 \
PLSY n PPADSY
|

PLSY N PPADY

FpY

Communication TFNP

Feasible Interpolation TENP<

Proof Upper Bounds = Circuit Upper Bounds /' & \

PLS PPPe PPA
PPADS
SOPL* PPAD“

EOPL

1 \
PLS““ n PPADS“
||

PLS“ N PPAD"

Lifting Theorems I

Proof Lower Bounds — Circuit Lower Bounds FPCC



“Feasible Interpolation”

Many interesting results from relating two worlds

If & C {0,1}" X O is a query search problem, let [n] = X U Y be variable partition
Define §* C {0,1}% x {0,1}* X O as a communication problem, so

. Alice gets x € {0,1}%, Bob gets y € {0,1}", solutions are X (x,y) = S(xy)
Fasy to see that for any TFNP class €, & € ¢ — %' € g

Translates circuit lower bounds to proof lower bounds
* Closely related to classical feasible interpolation results [K97, P97, BPROO,...]
* Construction underlies Cutting Planes l.bs for random CNFs [FPPR 16, HP16]



Lifting Theorems

* Query-to-communication lifting theorems give the other direction
e & C{0,1}*X O isaquerysearch problem, g : XX Y — {0,1}"is a gadget
e DefineSeg CX"XY'XOby(Sog)x,y) =8(g"(x,y))

 Alice gets x € X", Bob gets y € Y", evaluate z = g"(x, y) and solve &'(2)

o |f g “complex” then Alice and Bob’s best strategy is to simulate the query strategy

Theorem. [RM 99, GPW 14]
Let & C {0,1}" X O be a search problem, let Ind,,, : [m] X {0,1}" — {0,1} by
Ind,(x,y) =y.lfm= n%W then

FP“(S » Ind,,) = O(FPY(S) - log m)



Lifting Theorems

Proof Complexity Size

Tree-Like
Resolution Size

Resolution Size

Nullstellensatz
Monomial Size

Sherali-Adams
Monomial Size

Sums-of-Squares
Monomial Size

Proof Complexity
Degree

Resolution Depth

Resolution Width

Nullstellensatz Degree

Sherali-Adams Degree

SOS Degree

Circuit Complexity
Measure

Monotone Formula Size

Monotone Circuit Size

Monotone Span
Program Size

Linear Extension
Complexity

Semidefinite Extension
Complexity

Gadget

Index,
Low-Discrepancy

Index

Any High Rank

Index, Inner Product*

Index™

Citation

[Folklore, RM99,
GPW14, CKFMP19]

[GGKS17]

[PR18, dRMNPR20]

[GLMW14, CLRS14,
KMR17]
(Incomplete)

[LRS15]
(Incomplete)



TFNP Program in Proof and Circuit Complexity

* Allin all, this suggests a research program!

« Use TFNP classes to characterize circuit and proof classes.

* Relate these classes by feasible interpolation and lifting theorems

* Use intuition from one setting to prove results in the other setting.

 Many [T FNP classes are not characterized in either setting.

* |Intersection theorems are particularly interesting!

* Reversible Resolution = Resolution N Sherali-Adams* [HGMPRST 22]



Open Problems

« What TFNP problem captures Sums-of-Squares?

 What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)

» Characterize more circuit and proof classes using TFNP classes.

* (Can this approach (communication and query complexity) say anything novel
about very powerful proof systems?

 What about non-monotone complexity? Can anything be said?
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Thanks for Listening!



