Proofs, Circuits, Communication

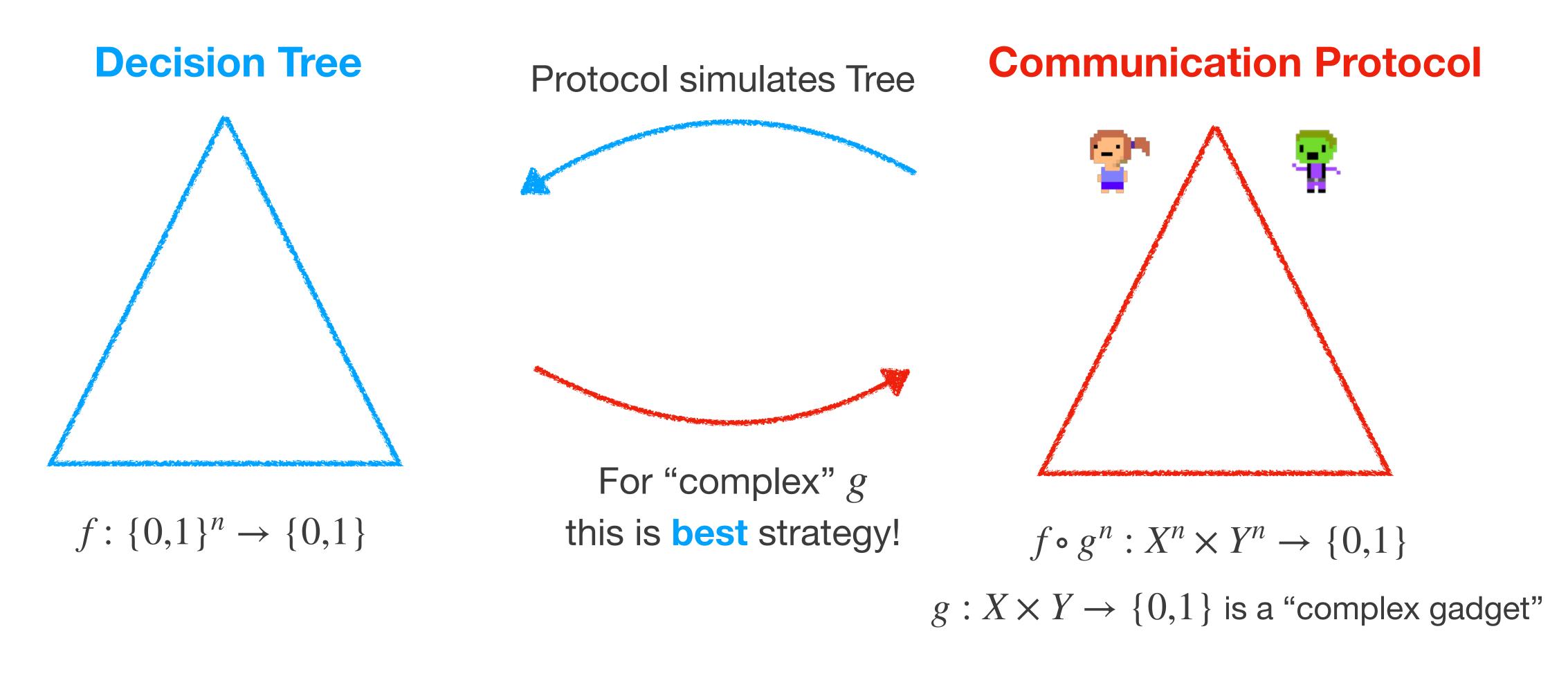
Robert Robere School of Computer Science McGill University

Reflections on Proofs in Algorithms and Complexity

FOCS 2021

February 8, 2022

Starting Point: Lifting Theorems



Recent explosion of lifting theorems in query and communication complexity

Lifting Theorems and Proof Complexity

- Many new results in proof and circuit complexity using lifting theorems [GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]
- The proofs of these results place total search problems at center stage!
 - 1. The False Clause Search Problem Search(F) for unsatisfiable CNF F
 - 2. The Karchmer-Wigderson Game KW(f) for boolean functions f
- To apply techniques, need query models that capture proof systems, communication models that capture circuit classes.
- Recent work ([GKRS18] building on [BCEIP98], closely related to [BK94, K94, ...]) suggested using TNFP classes as a guide to find these models.

Proof Complexity

This talk is here

Circuit Complexity

Goal for Today

- Tell two stories:
 - The False Clause Search Problem and Proof Complexity
 - The Karchmer-Wigderson Games and Circuit Complexity
- These are "two pieces" of a bigger theory of query/comm. TFNP
- Outline a research program using TFNP as a guide to capture proof systems and circuit classes.
 - (Close thematic links with Sam's and Neil's talks earlier.)

Part 1

Proofs and the False Clause Search Problem

False Clause Search Problem

Focus on complexity of refuting unsatisfiable CNF formulas

$$F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

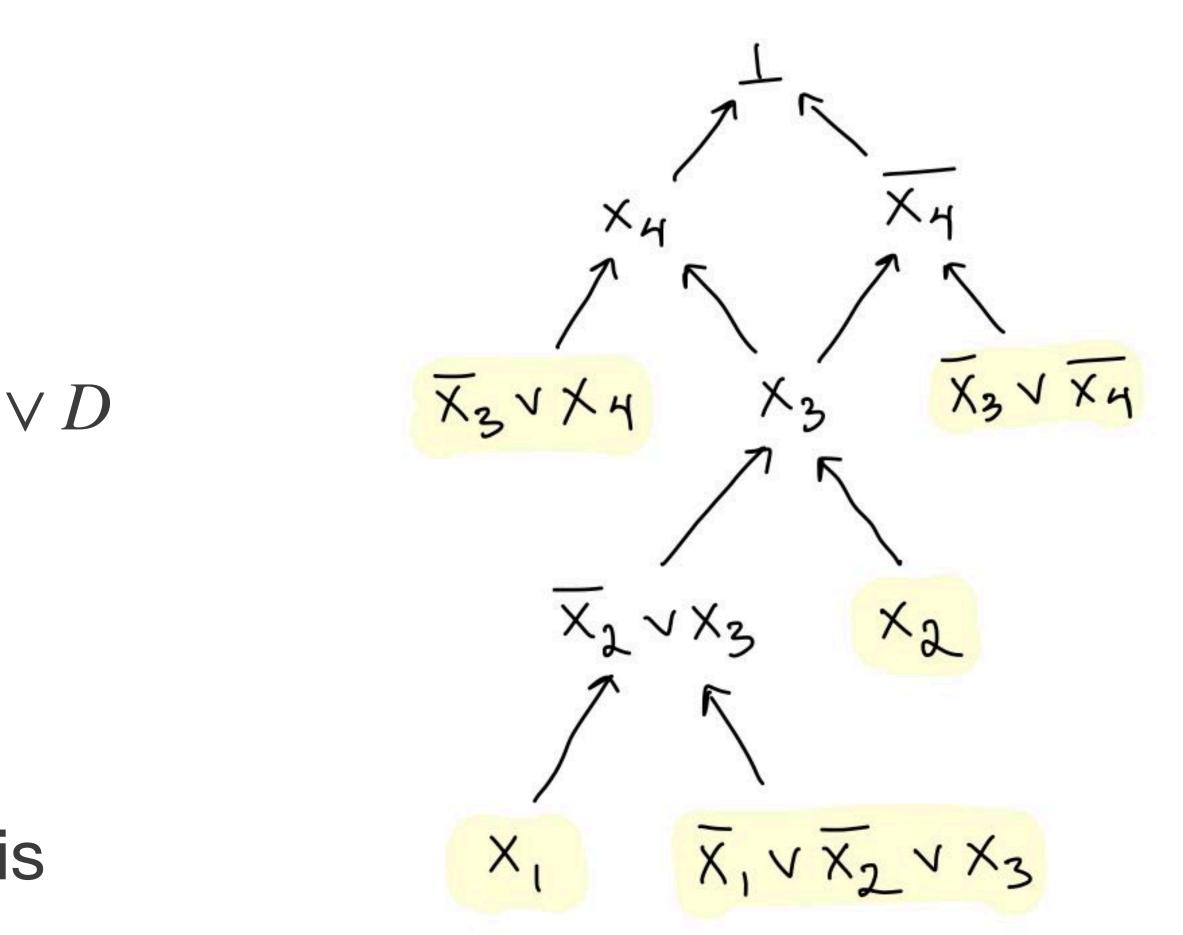
- Each C_i is a clause (disjunction of boolean literals)
- F has an associated total search problem:

- Given $x \in \{0,1\}^n$, find $i \in [m]$ such that $C_i(x) = 0$.
- Query Complexity of Search(F) \equiv Proof Complexity of F

 $Search(F) \subseteq \{0,1\}^n \times [m]$

Resolution Proofs

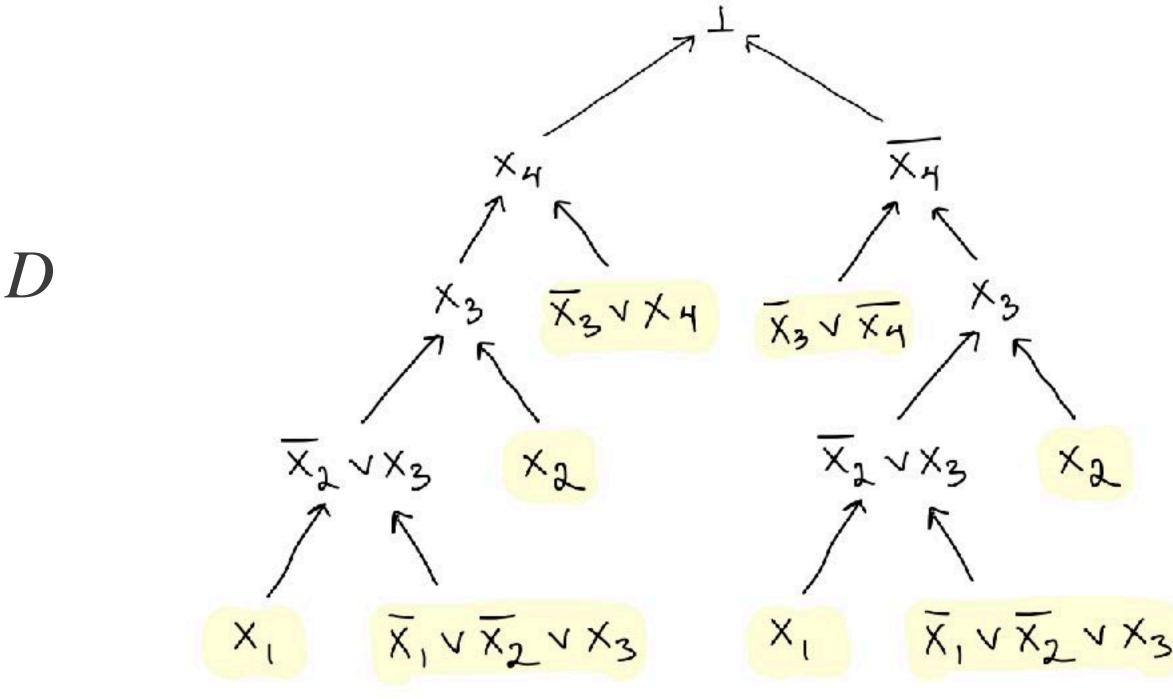
- Lines are clauses.
- New lines deduced using
 - **Resolution Rule**: $C \lor x, D \lor \overline{x} \vdash C \lor D$
- Length: Number of lines.
- **Depth**: Length of longest path.
- Proof is tree-like if each clause is used at most once.
 - Input clauses can be copied any number of times



Example. $F = x_1 \land x_2 \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_3 \lor \overline{x}_4)$ Length: 10, Depth: 4

Resolution Proofs

- Lines are clauses.
- New lines deduced using
 - Resolution Rule: $C \lor x, D \lor \overline{x} \vdash C \lor D$
- Length: Number of lines.
- **Depth**: Length of longest path.
- Proof is tree-like if each clause is used at most once.
 - Input clauses can be copied any number of times

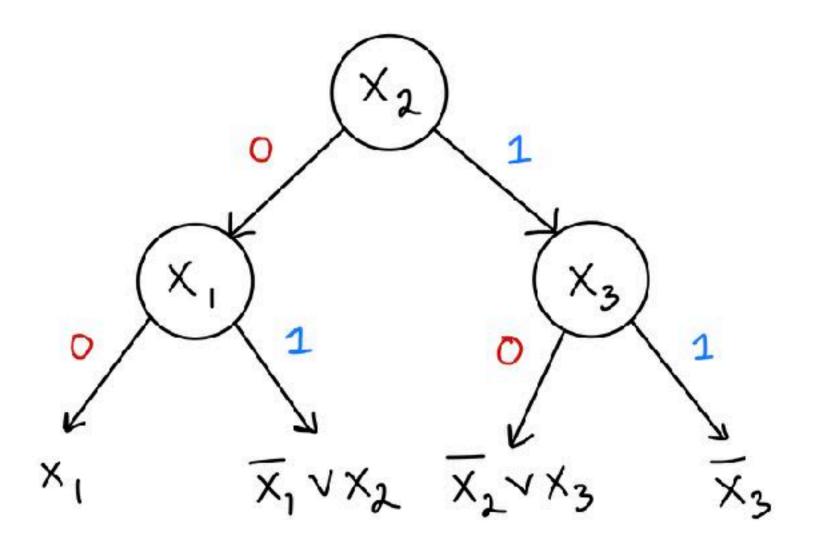


Example. $F = x_1 \land x_2 \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_3 \lor \overline{x}_4)$ Length: 10, Depth: 4

Decision Trees for Search(*F*)

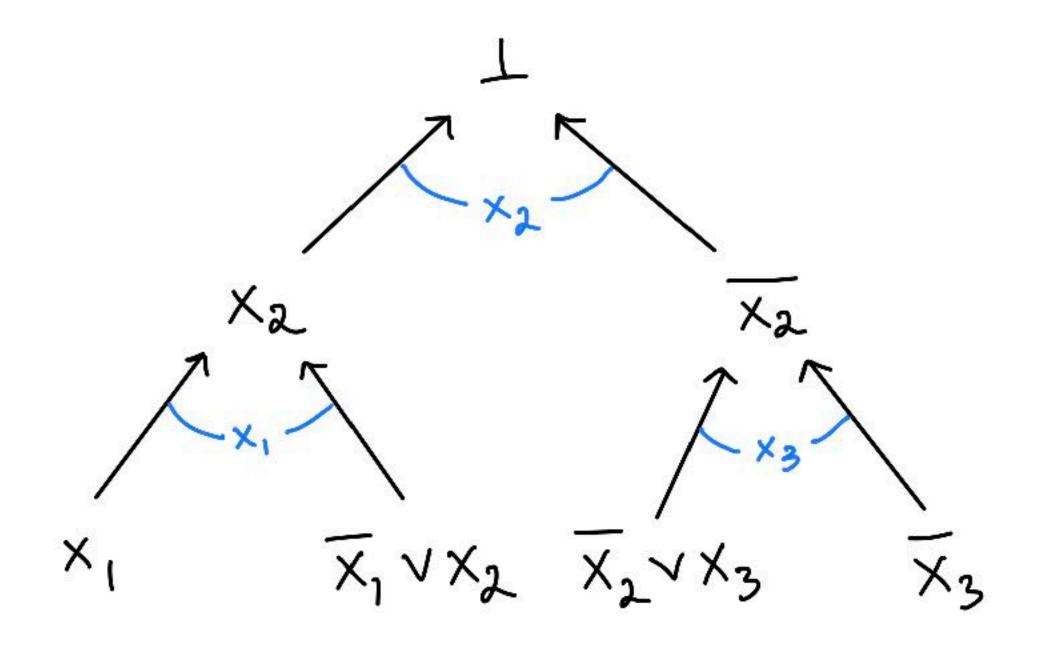
- Size: Number of nodes
- Depth: Length of longest path
- Given boolean assignment, follow unique path consistent with that assignment, output violated clause.
 - Decision tree for Search(F) is related to the **DPLL method** for solving SAT.

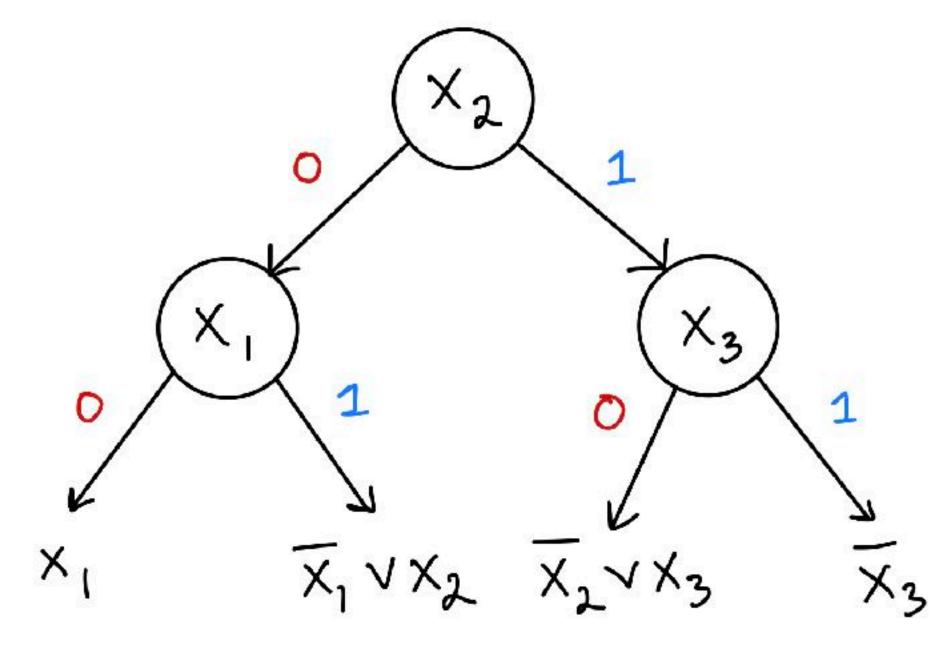
 $Search(F) \subseteq \{0,1\}^n \times [m]$ Given $x \in \{0,1\}^n$, find $i \in [m]$ such that $C_i(x) = 0$.



 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

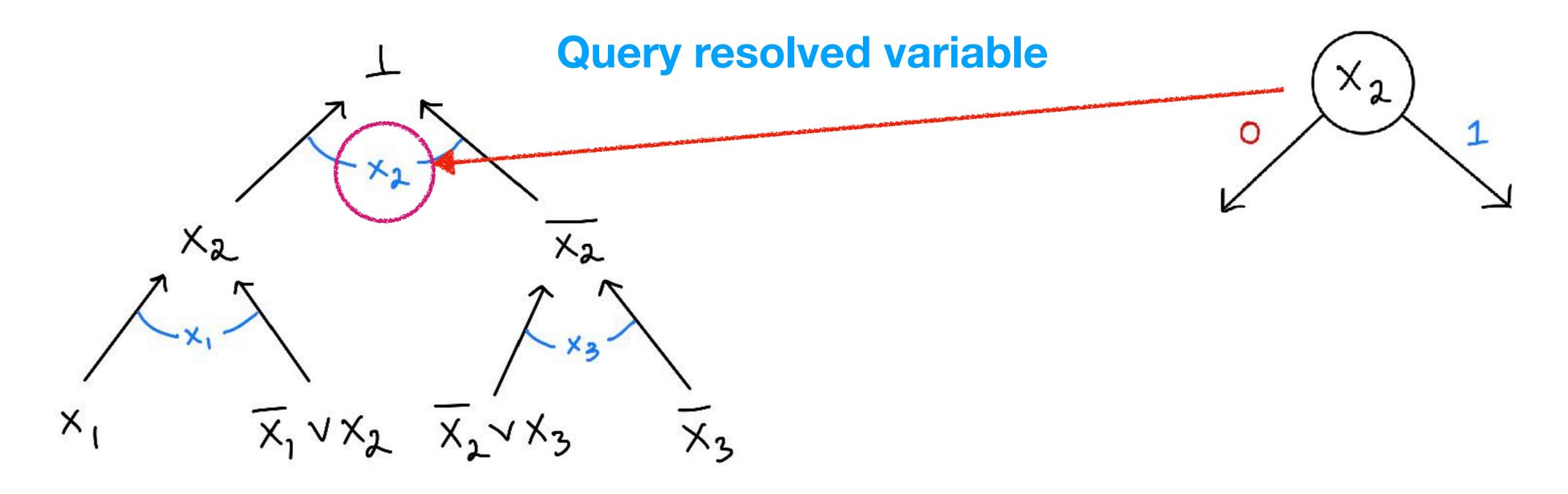
Tree-Like Resolution of F





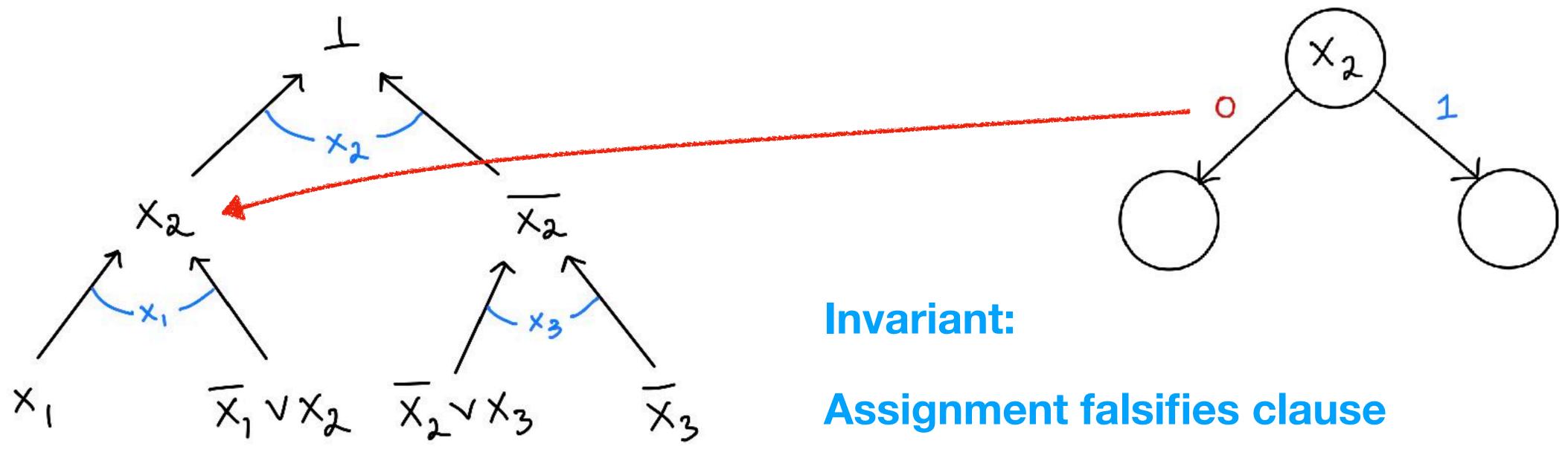
 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F



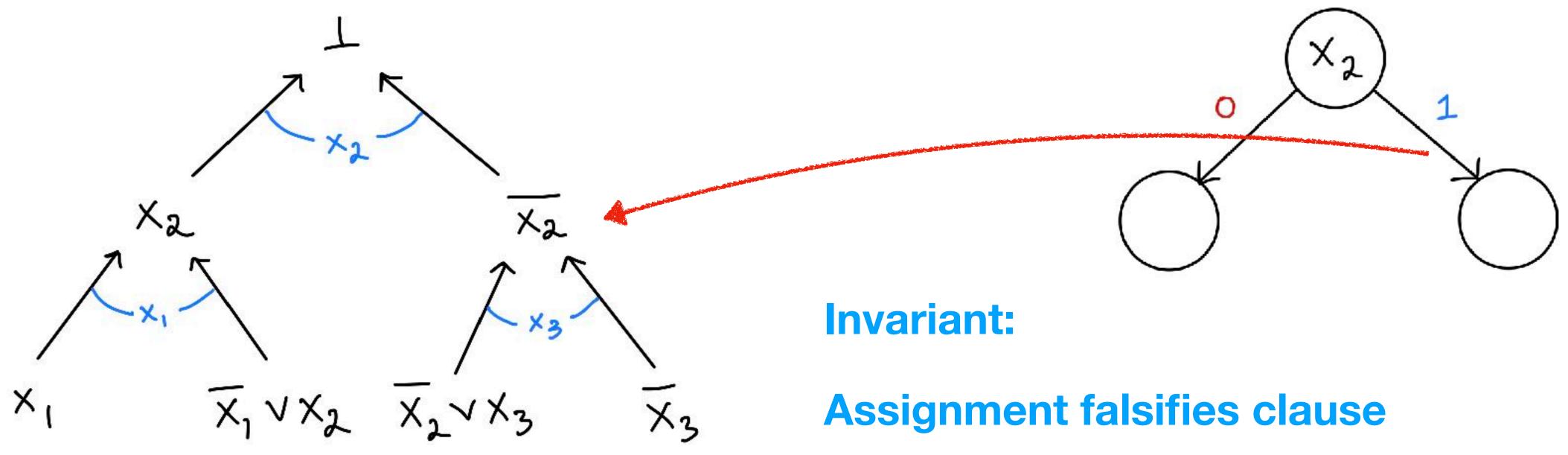
 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F



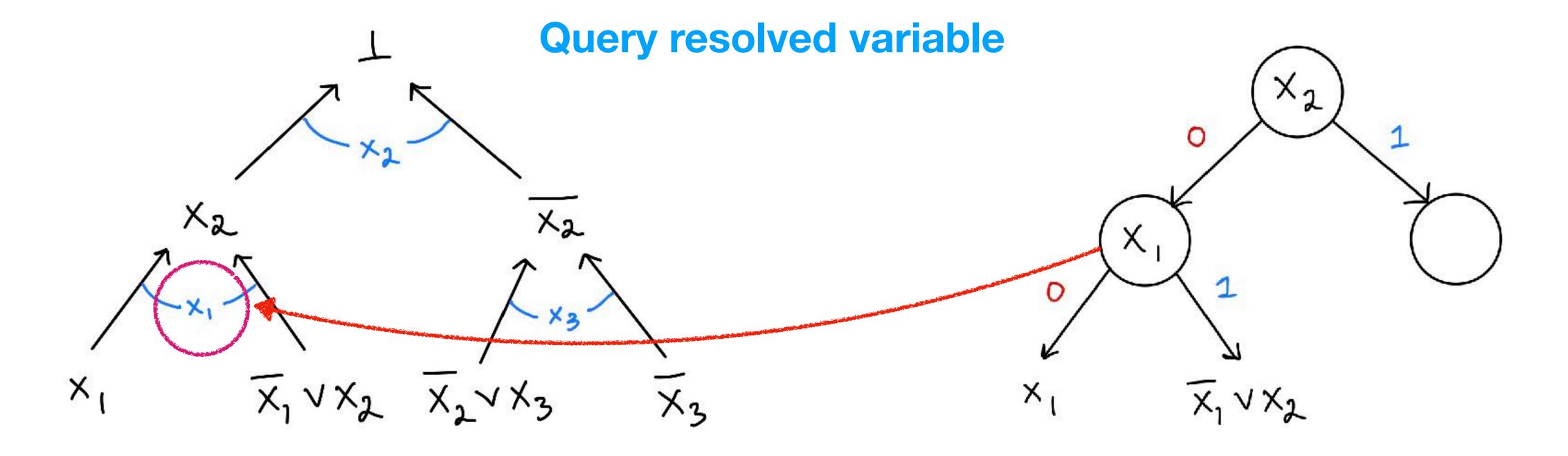
 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F



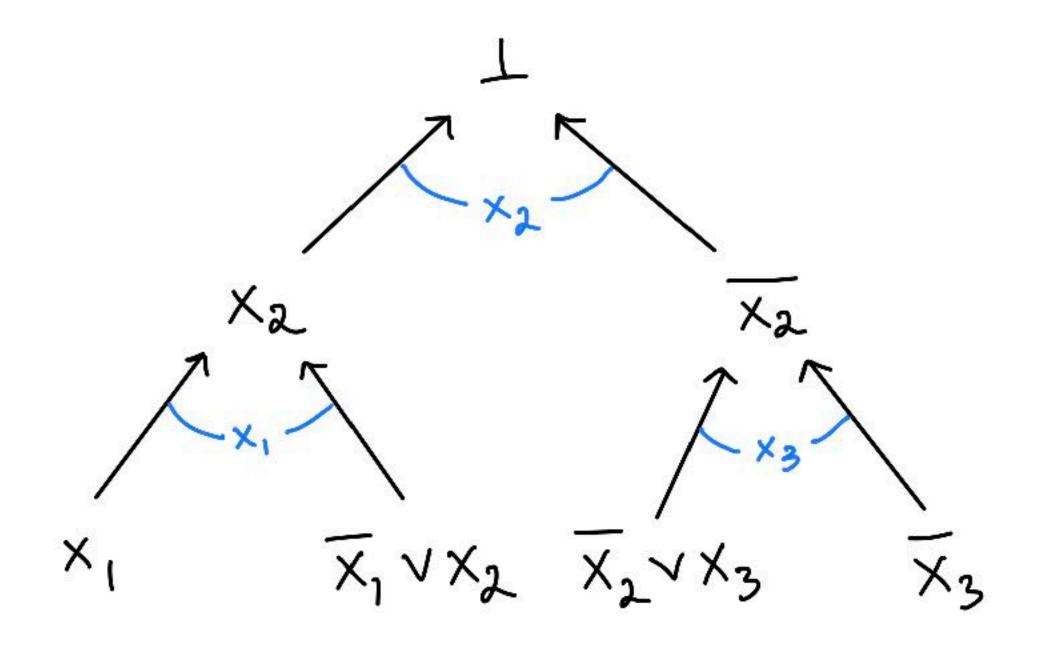
 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

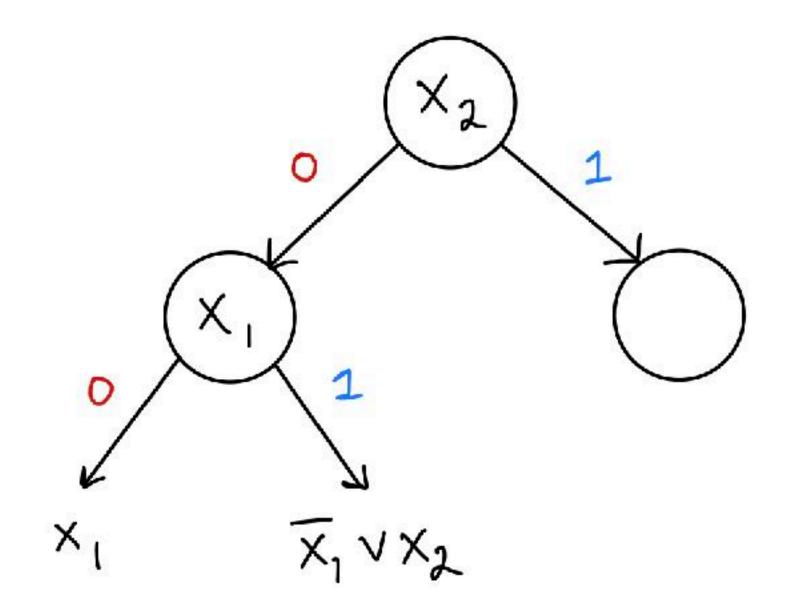
Tree-Like Resolution of F



 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

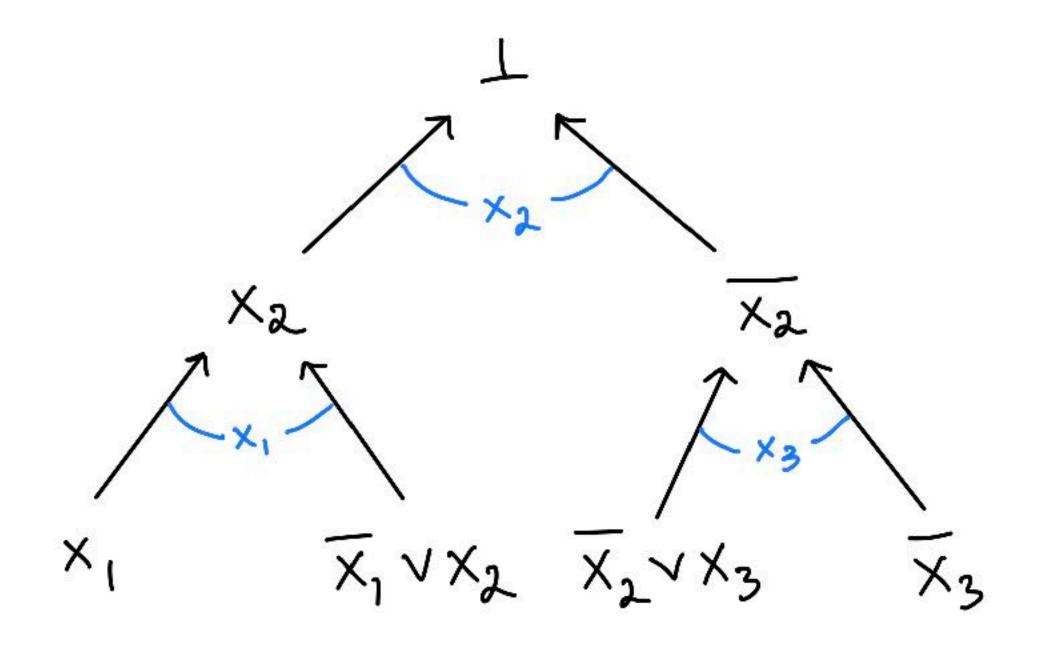
Tree-Like Resolution of F

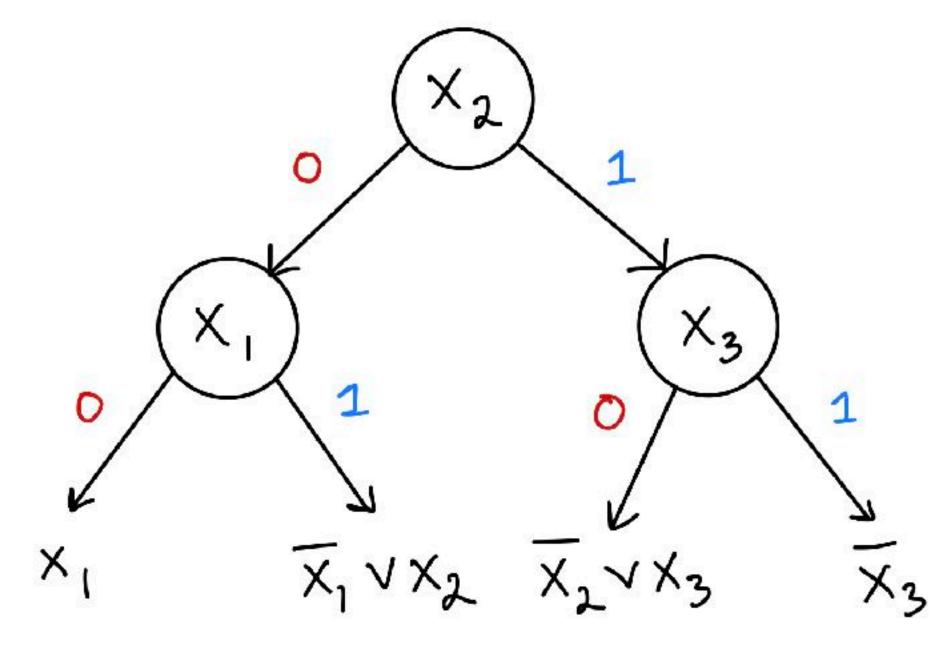




 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

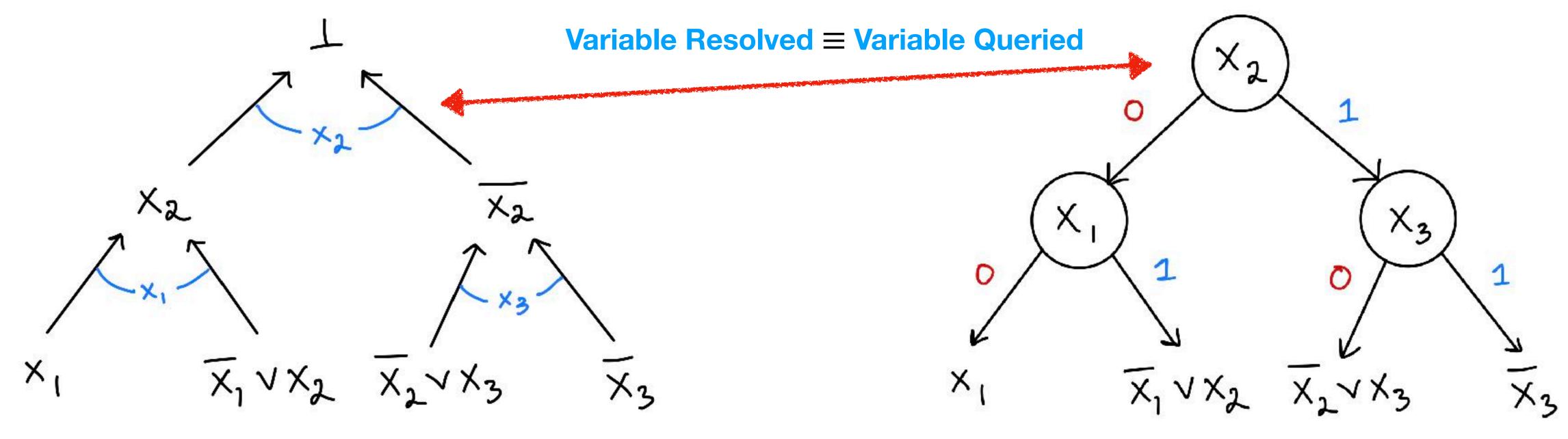
Tree-Like Resolution of F





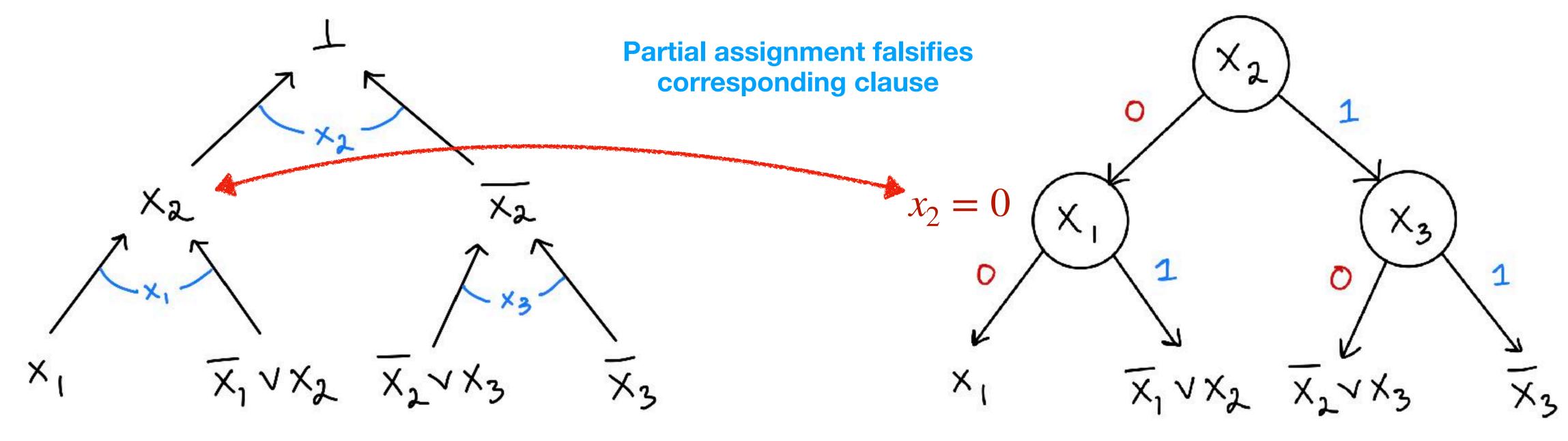
 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F



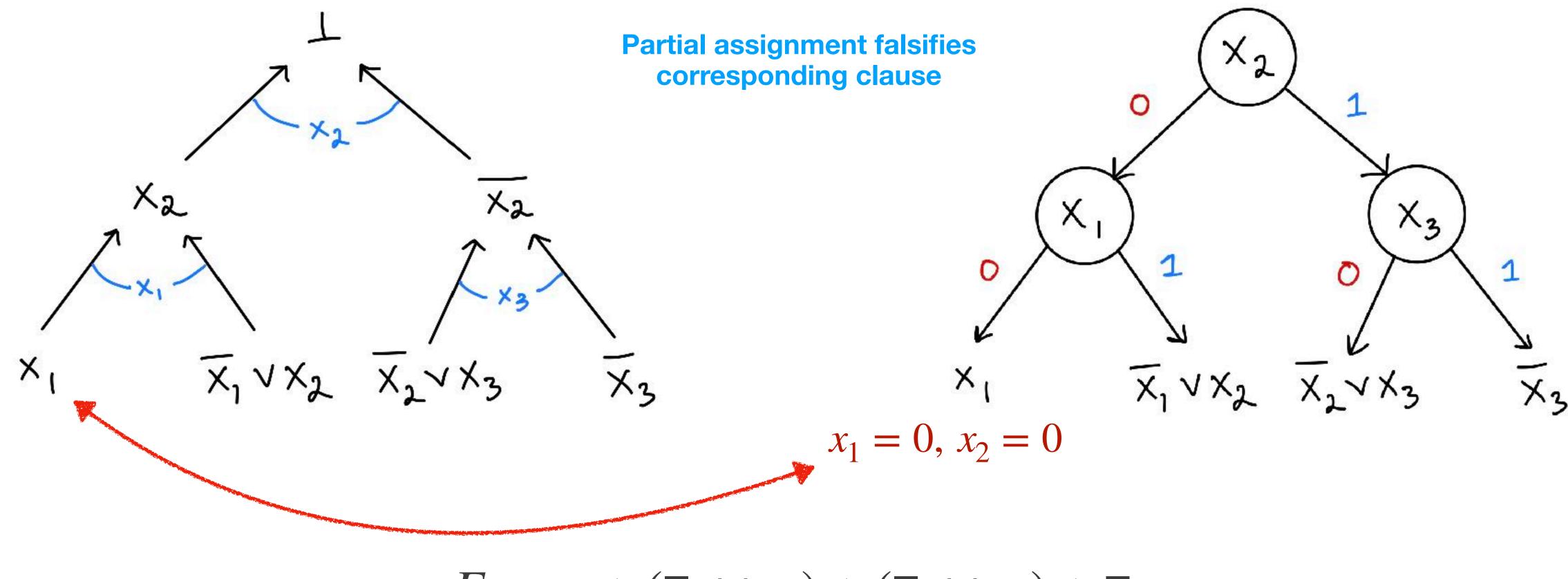
 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F



 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

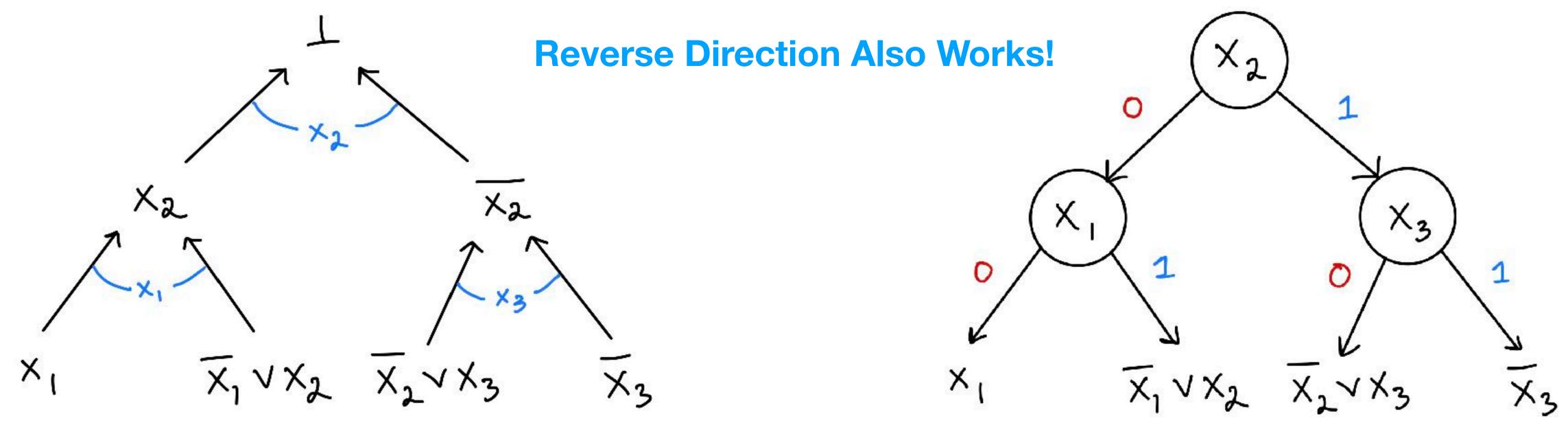
Tree-Like Resolution of F



Decision Tree for Search(F)

 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F



 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

- **Theorem.** Let F be an unsatisfiable CNF formula. Then
 - Size $\leq s$, depth $\leq d$ Tree-like Res. refutation of F if and only if
 - Size $\leq s$, depth $\leq d$ Decision Tree for Search(F)

Correspondence is stronger: essentially the same object!

Total Search Problems in Query Complexity

- Let *O* be finite, $\mathcal{S} \subseteq \{0,1\}^n \times O$.
- $\mathcal{S}(x) := \{ o \in O : (x, o) \in \mathcal{S} \}$ is set of feasible solutions for x.
- S is a total search problem if $\forall x : S(x) \neq \emptyset$
- $FP^{dt}(S) := Query Complexity of S$:= Depth of shallowest decision tree solving \mathcal{S}
- $FP^{dt} := All total search problems S such that$

$$\mathsf{FP}^{dt}(\mathbf{a})$$

 $\mathcal{S}) = \log^{O(1)}(n)$

Query TFNP

- A certificate of S is a partial restriction $\rho \in \{0,1,*\}^n$ s.t.
 - $\exists o \in O, \forall x \in \{0,1\}^n$ consistent with $\rho: o \in \mathcal{S}(x)$
- A certificate cover of \mathcal{S} is a set of certificates R such that every $x \in \{0,1\}^n$ is consistent with some $\rho \in R$.

$$\mathsf{TFNP}^{dt}(\mathcal{S}) := \mathbb{R}^{R}$$

- NP Algorithm: Given $x \in \{0,1\}^n$,
 - Non-deterministically guess $\rho \in R$,
 - Verify x is consistent by querying fixed coordinates in ρ

min max $|fixed(\rho)|$ *R* COVEr $\rho \in R$

Query TFNP

- A certificate of S is a partial restriction $\rho \in \{0,1,*\}^n$ s.t.
 - $\exists o \in O, \forall x \in \{0,1\}^n$ consistent with $\rho: o \in \mathcal{S}(x)$
- A certificate cover of \mathcal{S} is a set of certificates R such that every $x \in \{0,1\}^n$ is consistent with some $\rho \in R$.

$$\mathsf{TFNP}^{dt}(\mathcal{S}) := R$$

• TFNP^{dt} := all total search problems \mathcal{S} with

min max $|fixed(\rho)|$ COVER $\rho \in R$

 $\mathsf{TFNP}^{dt}(\mathcal{S}) = \log^{O(1)} n$

What's So Special About Search(F)? • For unsat. $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$, clauses are certificates: : TFNP^{dt}(Search(F)) \leq width(F)

- Any total S can be reduced to solving Search(F) for some F:
 - Given S and certificate cover R, define $F_R := \wedge_{\rho \in R} C_{\overline{\rho}}$ where $C_{\overline{\rho}}$ is the maximum-width clause falsified by ρ .
 - Solving Search(F_R) gives a certificate for \mathcal{S} which then lets us solve \mathcal{S} . Converse also holds, under reasonable assumptions.

Summary

- Any unsatisfiable CNF F has an associated Search(F)
- Decision trees for $Search(F) \equiv Tree-Res$. refutations of F
- Search(*F*) is complete* for TFNP^{dt}

Can we capture other proof systems?

Part 2

Circuits and the Karchmer-Wigderson Game

Karchmer-Wigderson Games

- Focus on complexity of boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$
 - f monotone if $x \le y$ (coordinate-wise) implies $f(x) \le f(y)$
 - f is partial if $f: \{0,1\}^n \rightarrow \{0,1,*\}, *$ means we "don't care".
- *f* has an associated total search problem [KW 90]

- $KW(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$ Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i \neq y_i$

• Circuit Complexity of $f \equiv Communication Complexity of KW(f)$

Karchmer-Wigderson Games

- Focus on complexity of boolean functions $f: \{0,1\}^n \rightarrow \{0,1\}$
 - f monotone if $x \le y$ (coordinate-wise) implies $f(x) \le f(y)$
 - f is partial if $f: \{0,1\}^n \rightarrow \{0,1,*\}, *$ means we "don't care".
- f has an associated total search problem [KW 90]
- If f is monotone, then there is a more restricted game:

Given
$$x \in f^{-1}(1), y \in f^{-1}(1)$$

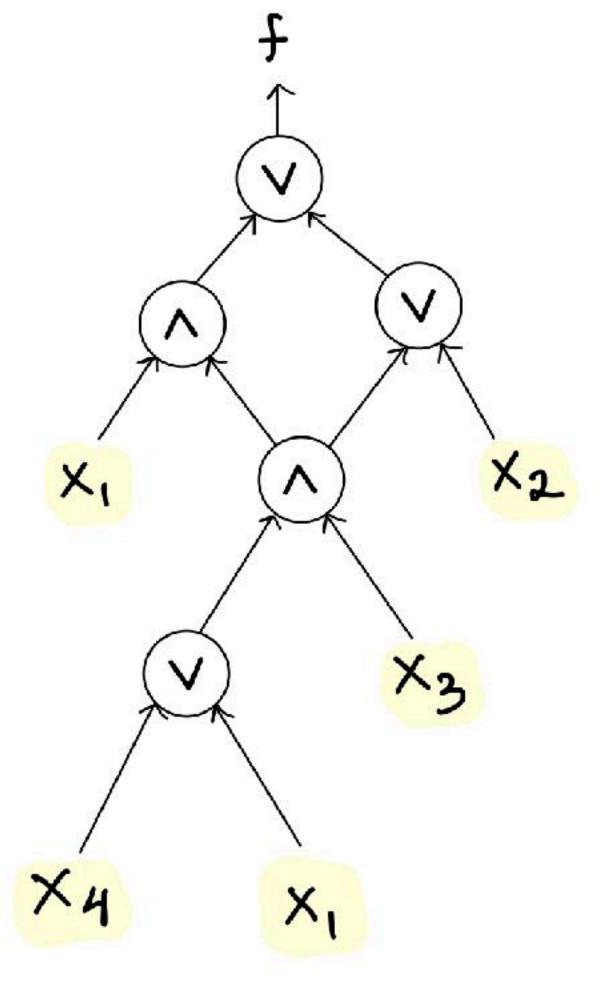
- $mKW(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$
 - (0), find $i \in [n]$ such that $x_i > y_i$

• Circuit Complexity of $f \equiv Communication Complexity of KW(f)$

Boolean Circuits

- Device to compute boolean functions
- Starting* from boolean literals, use \land and \lor gates to compute a target function.
- Size := Number of gates
- **Depth** := Length of longest root-leaf path
- Circuit is a formula if no gate re-used.

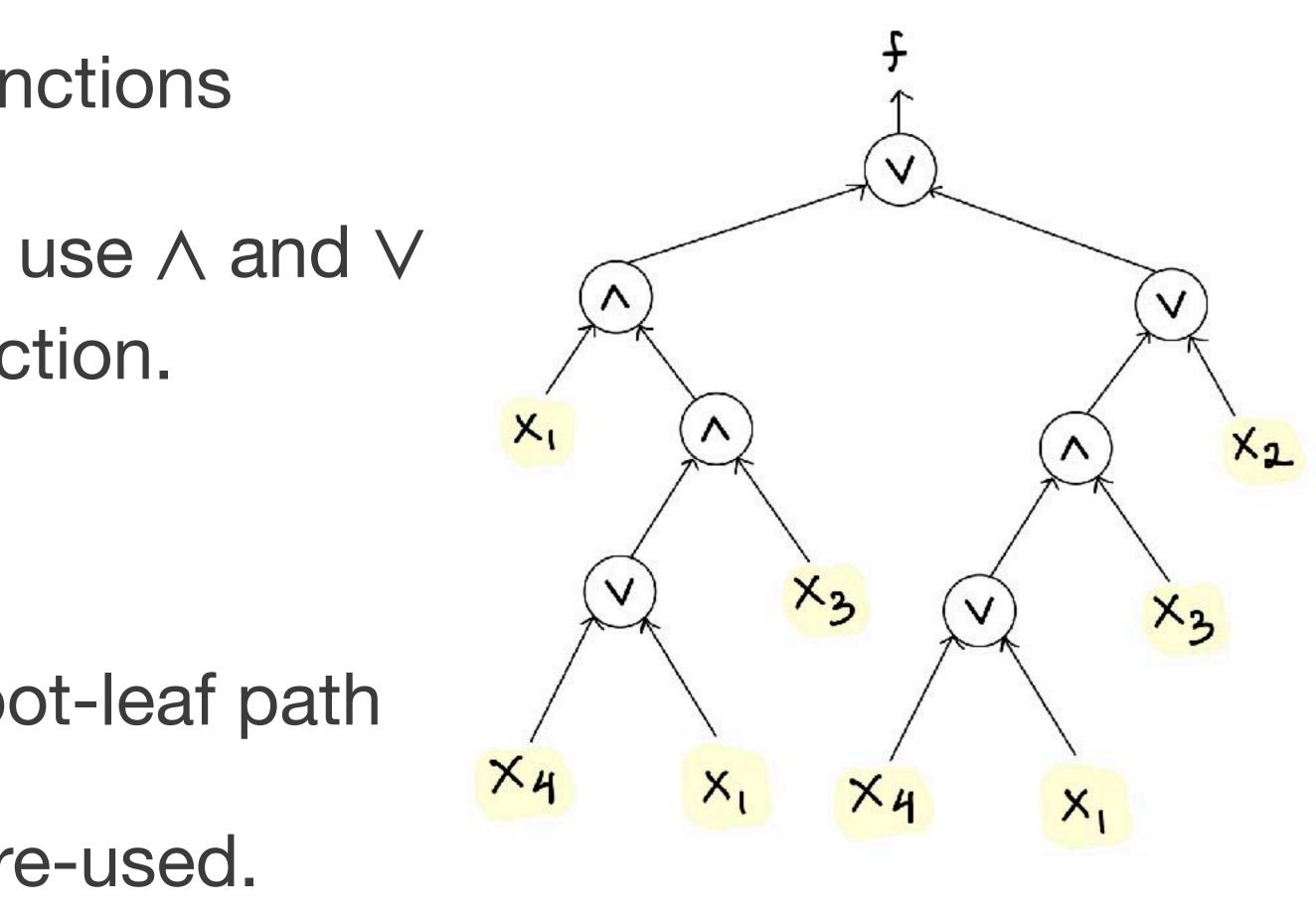
* These are technically **DeMorgan circuits**, but are polynomially equivalent to standard boolean circuits.



Boolean Circuits

- Device to compute boolean functions
- Starting^{*} from boolean literals, use ∧ and ∨ gates to compute a target function.
- Size := Number of gates
- **Depth** := Length of longest root-leaf path
- Circuit is a formula if no gate re-used.

* These are technically **DeMorgan circuits**, but are polynomially equivalent to standard boolean circuits.



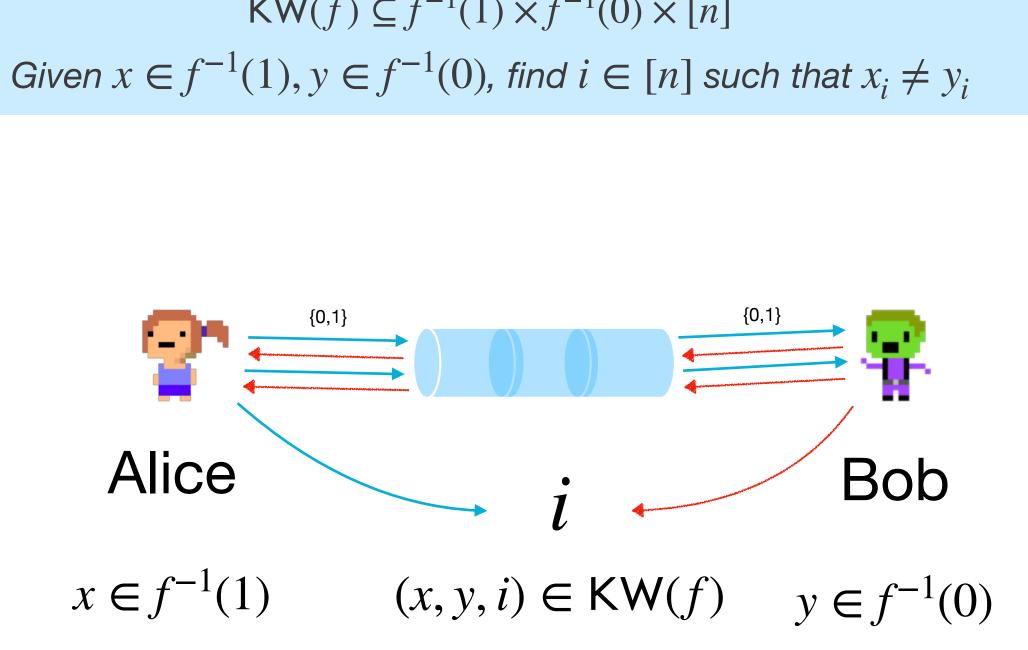
Communication Protocols for KW(f)

• Two players, Alice and Bob

• A.
$$\leftarrow x \in f^{-1}(1), B. \leftarrow y \in f^{-1}(0)$$

- Communicate by sending bits over a channel, goal is to find $i: x_i \neq y_i$
- **Protocol:** Tree telling Alice and Bob who speaks at each point.

$\mathsf{KW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$



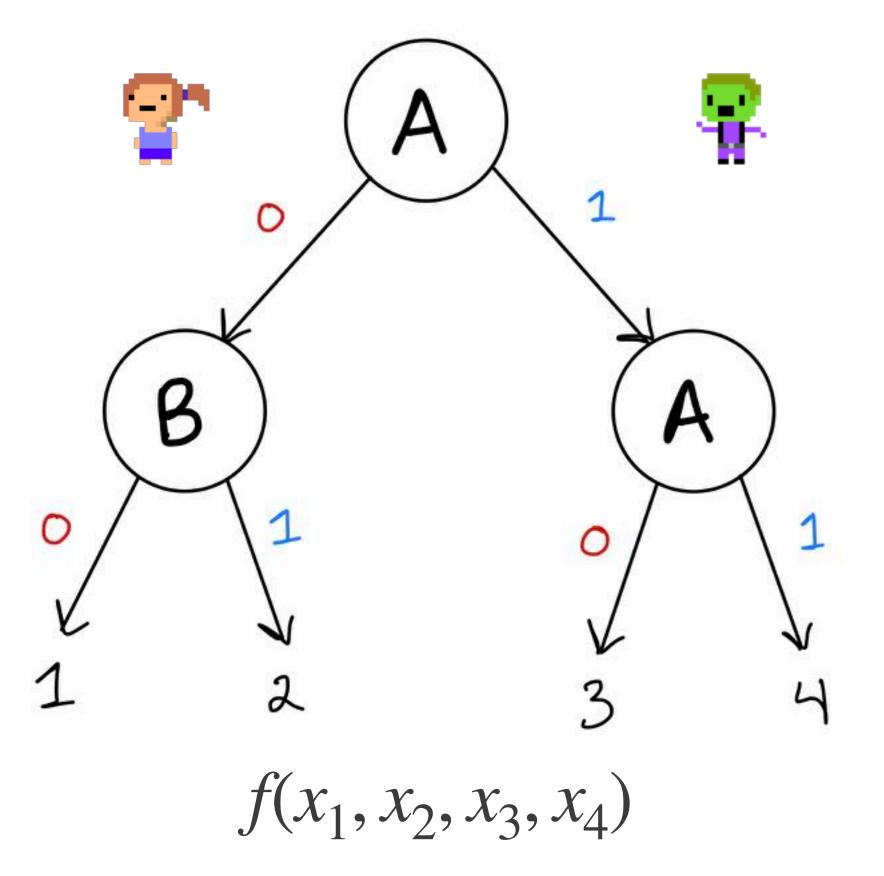
Communication Protocols for KW(f)

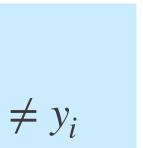
• Two players, Alice and Bob

• A.
$$\leftarrow x \in f^{-1}(1), B. \leftarrow y \in f^{-1}(0)$$

- Communicate by sending bits over a channel, goal is to find $i : x_i \neq y_i$
- **Protocol:** Tree telling Alice and Bob who speaks at each point.
- **Depth** := Length of longest path
- Size := Number of nodes in tree

$\mathsf{KW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$ Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i \neq y_i$





Combinatorial Rectangles

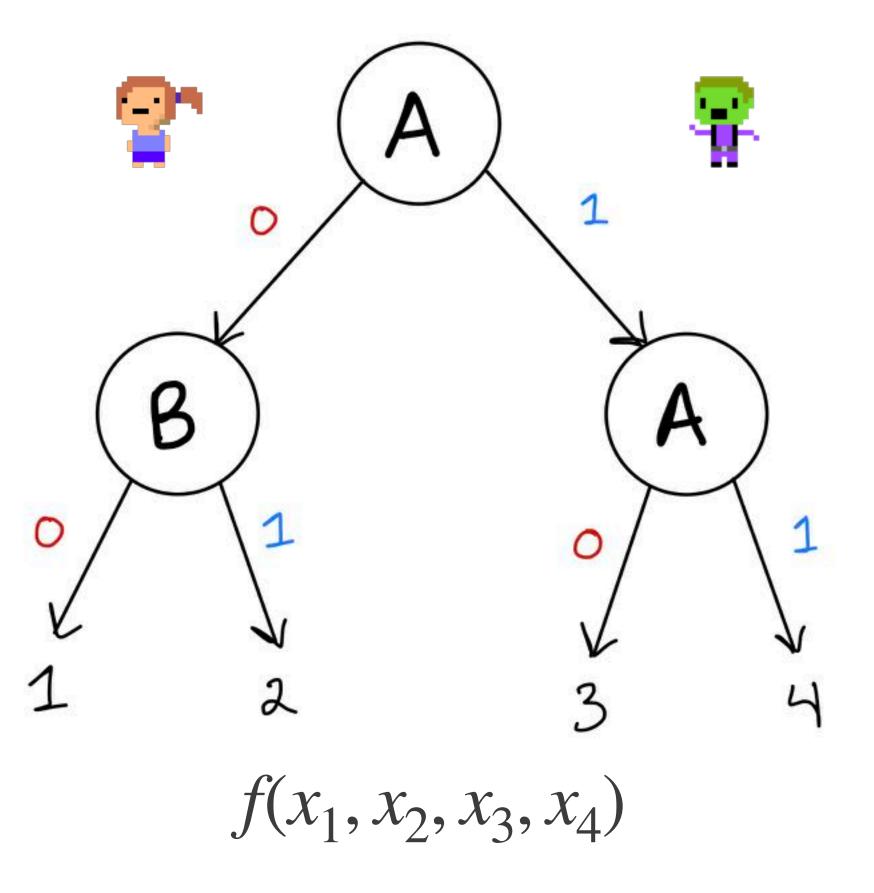
 A combinatorial rectangle in $U \times V$ is a set of the form

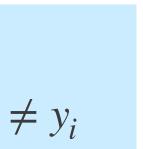
$A \times B \subseteq U \times V$

for $A \subseteq U, B \subseteq V$.

• The set of inputs reaching a node in a protocol is a combinatorial rectangle!

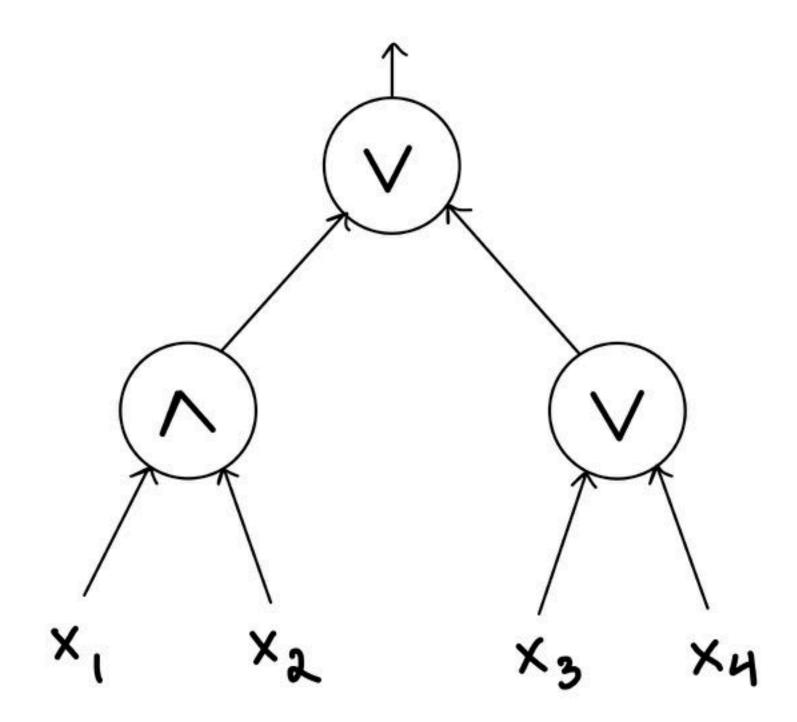
$\mathsf{KW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$ Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i \neq y_i$



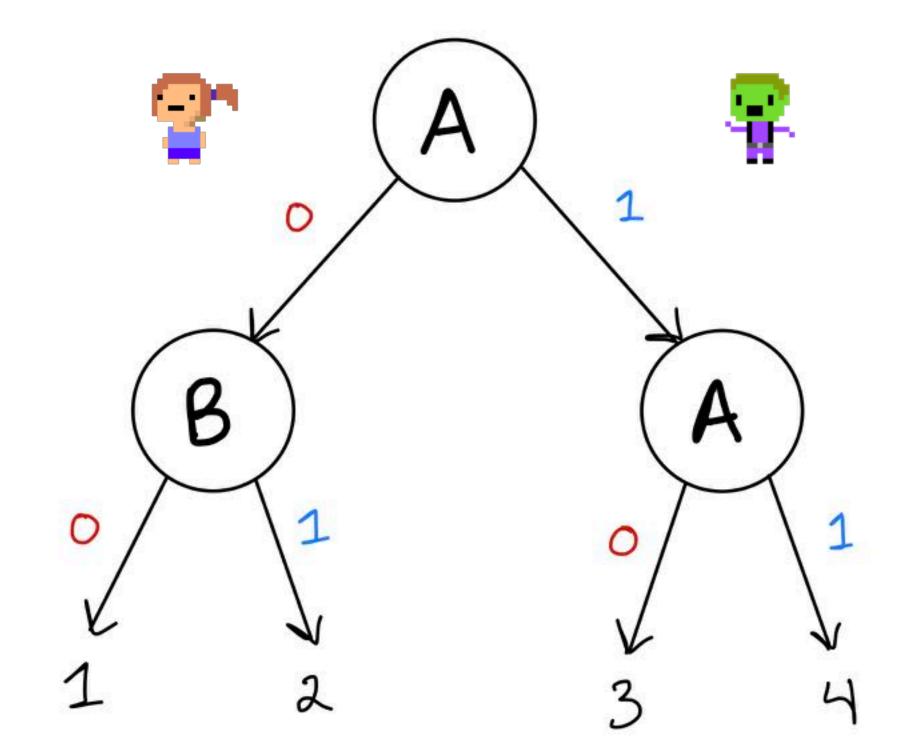


Formulas \equiv Communication

Boolean Formula for f

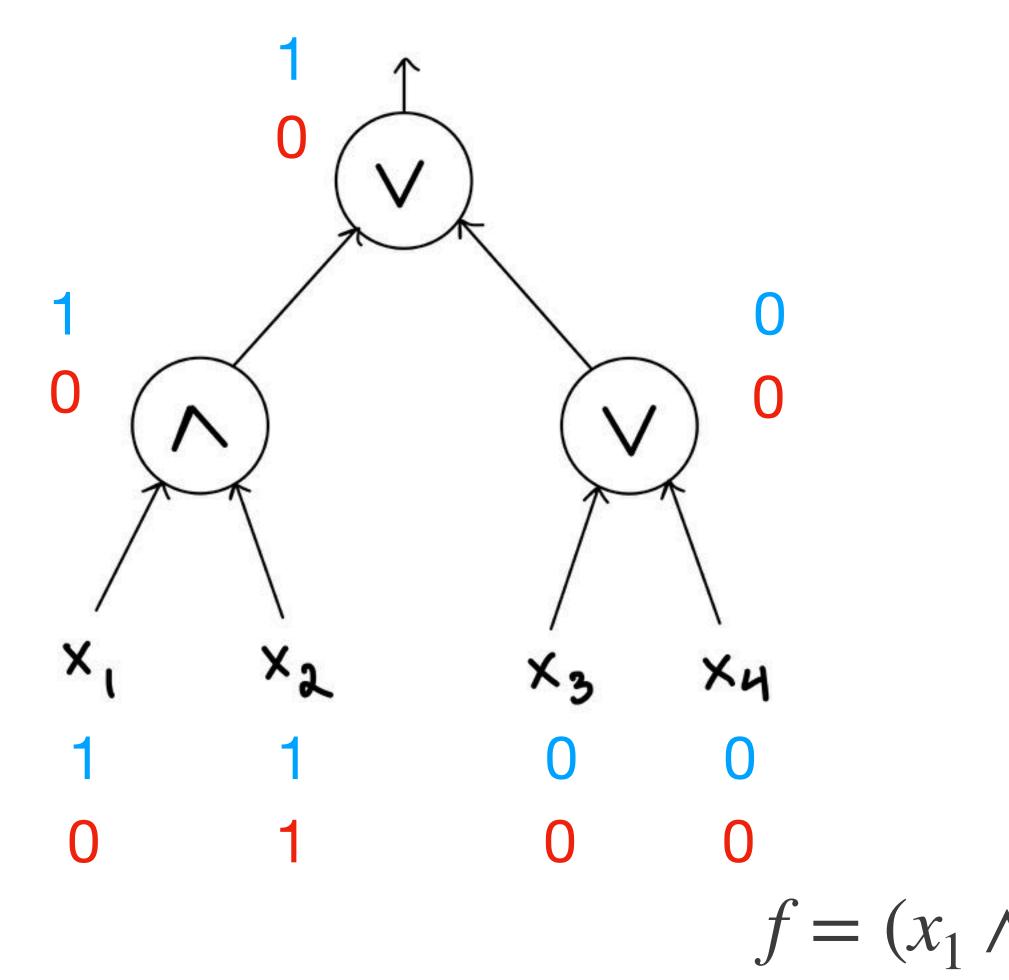


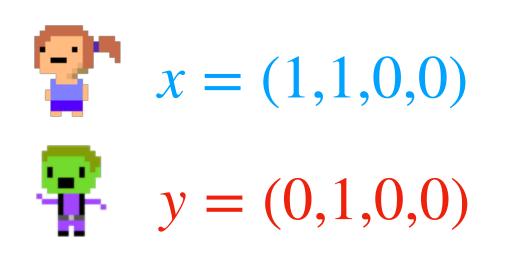
Protocol for KW(f)



 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

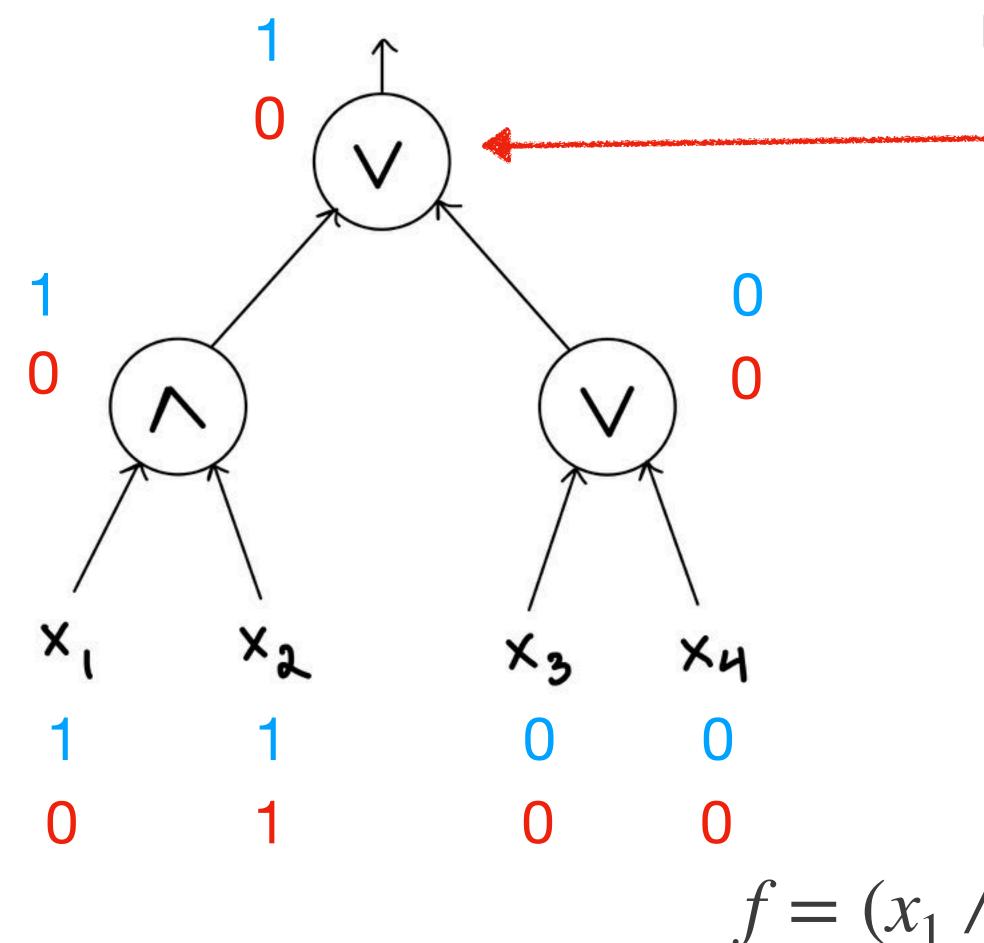
Boolean Formula for f

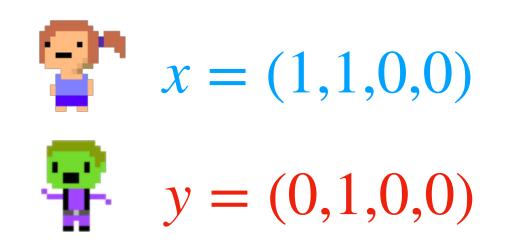


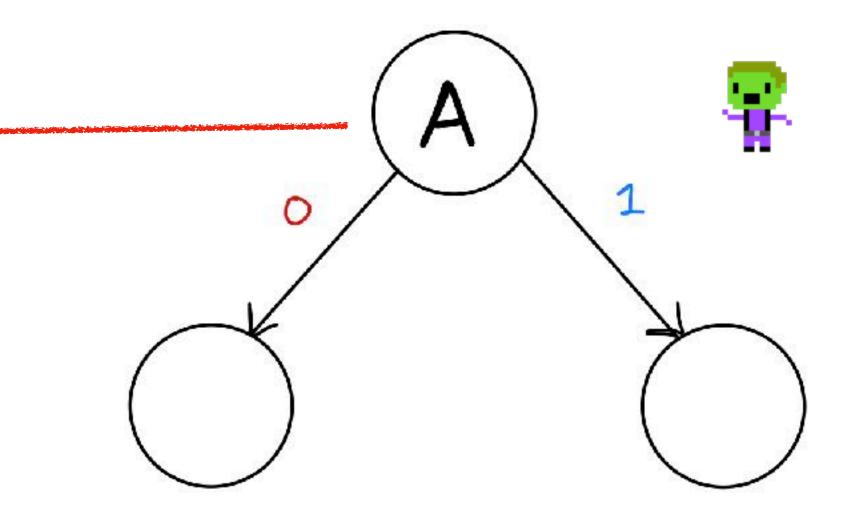


 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Boolean Formula for f

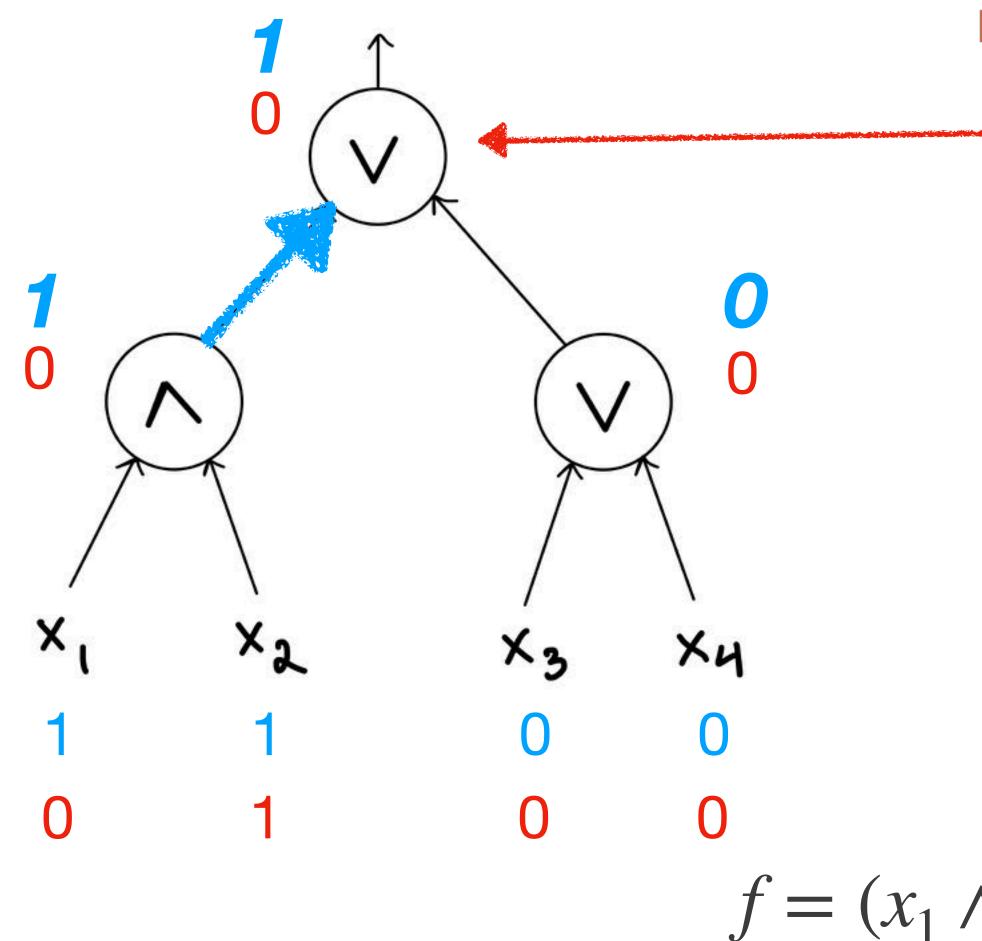


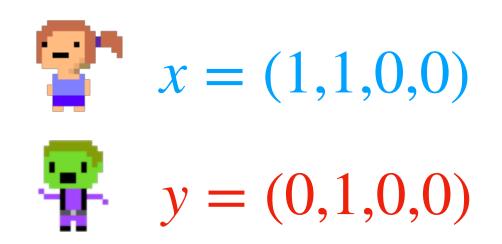


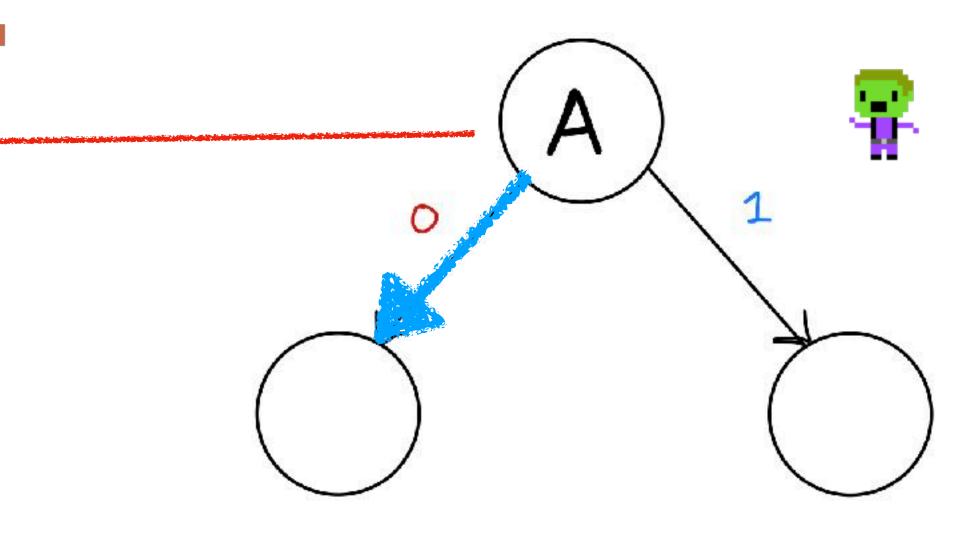


 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Boolean Formula for f

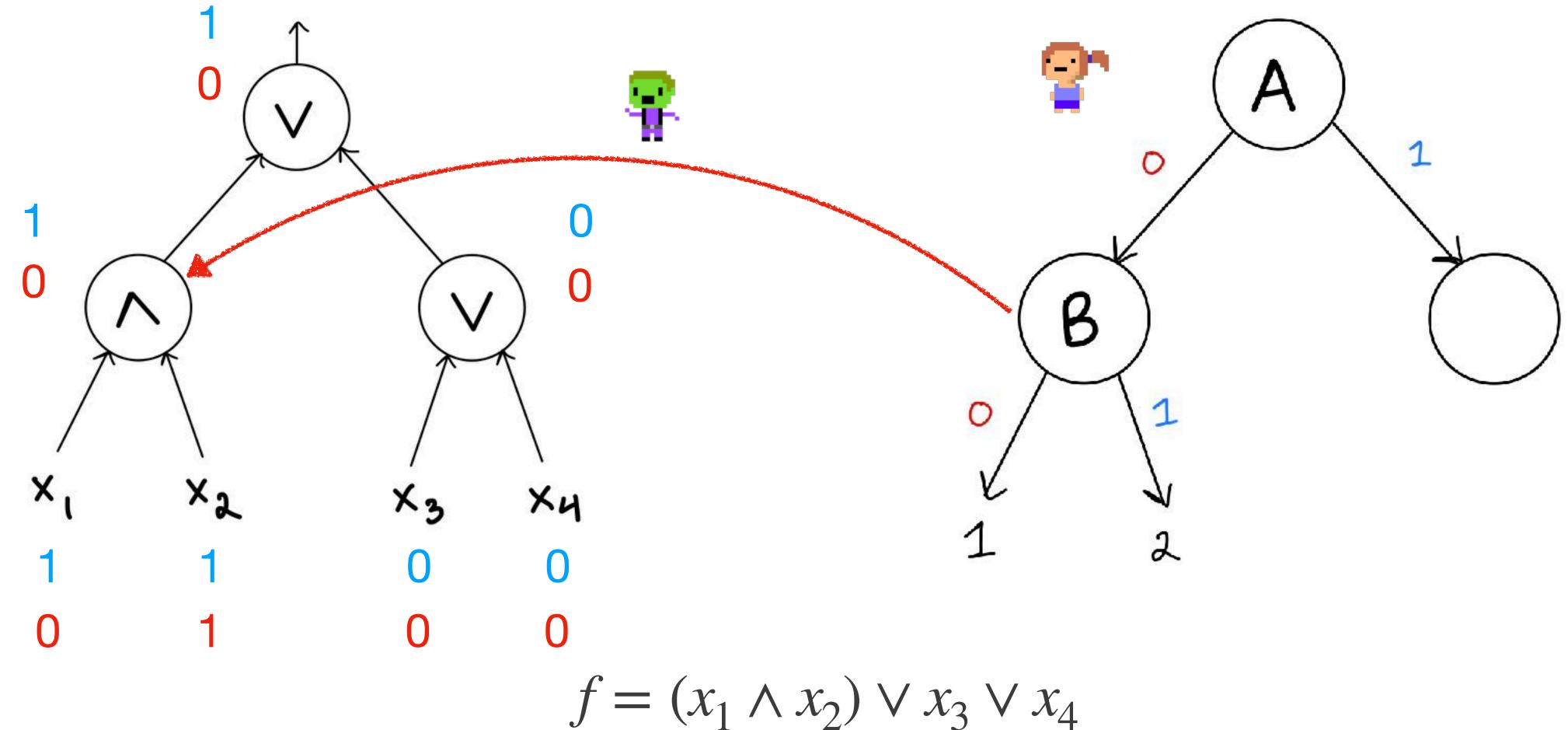


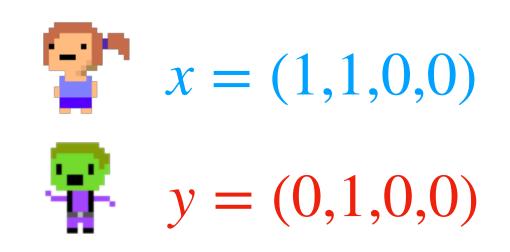




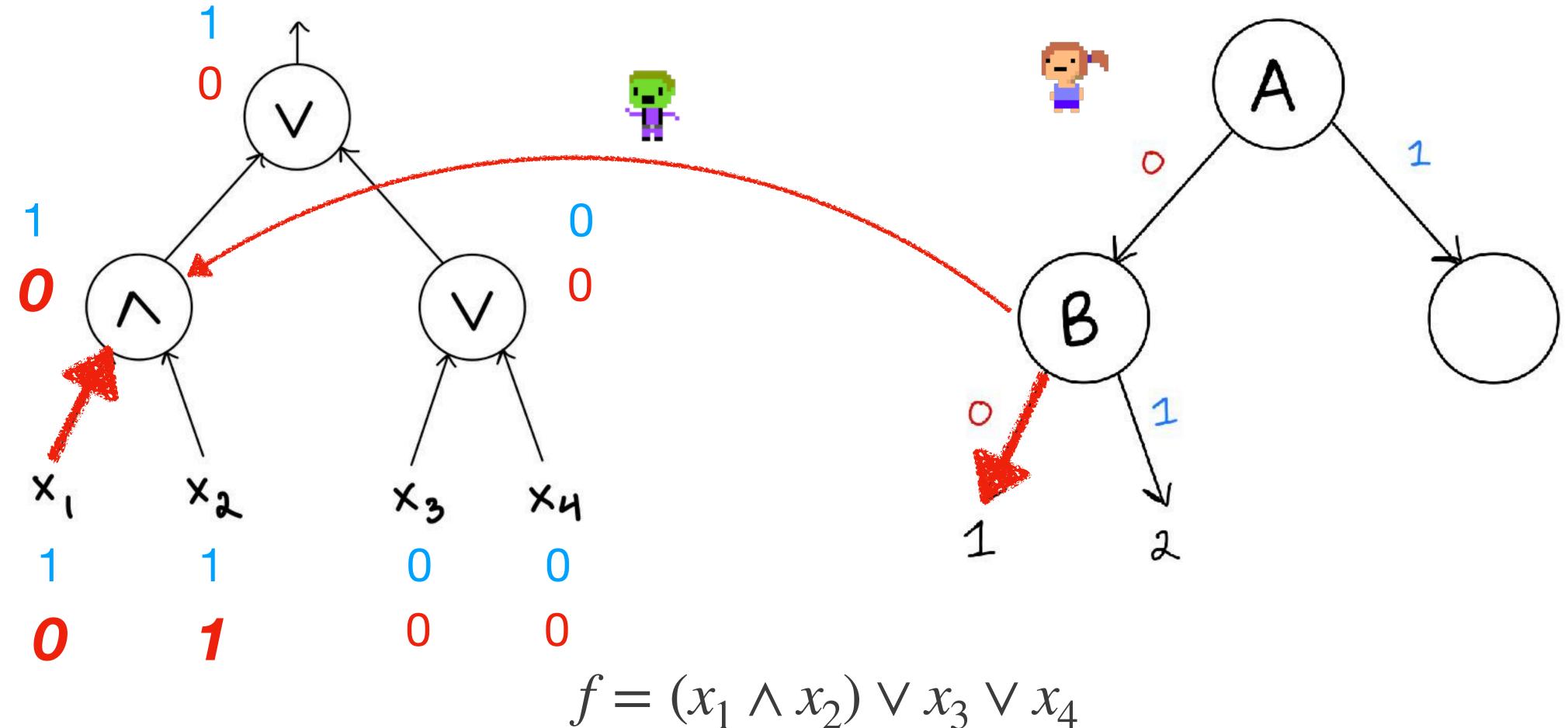
 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

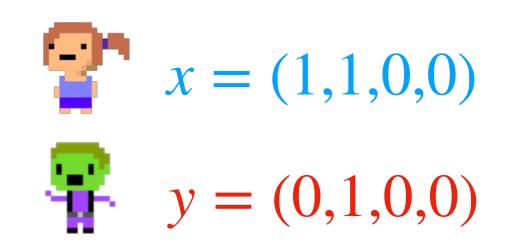
Boolean Formula for f



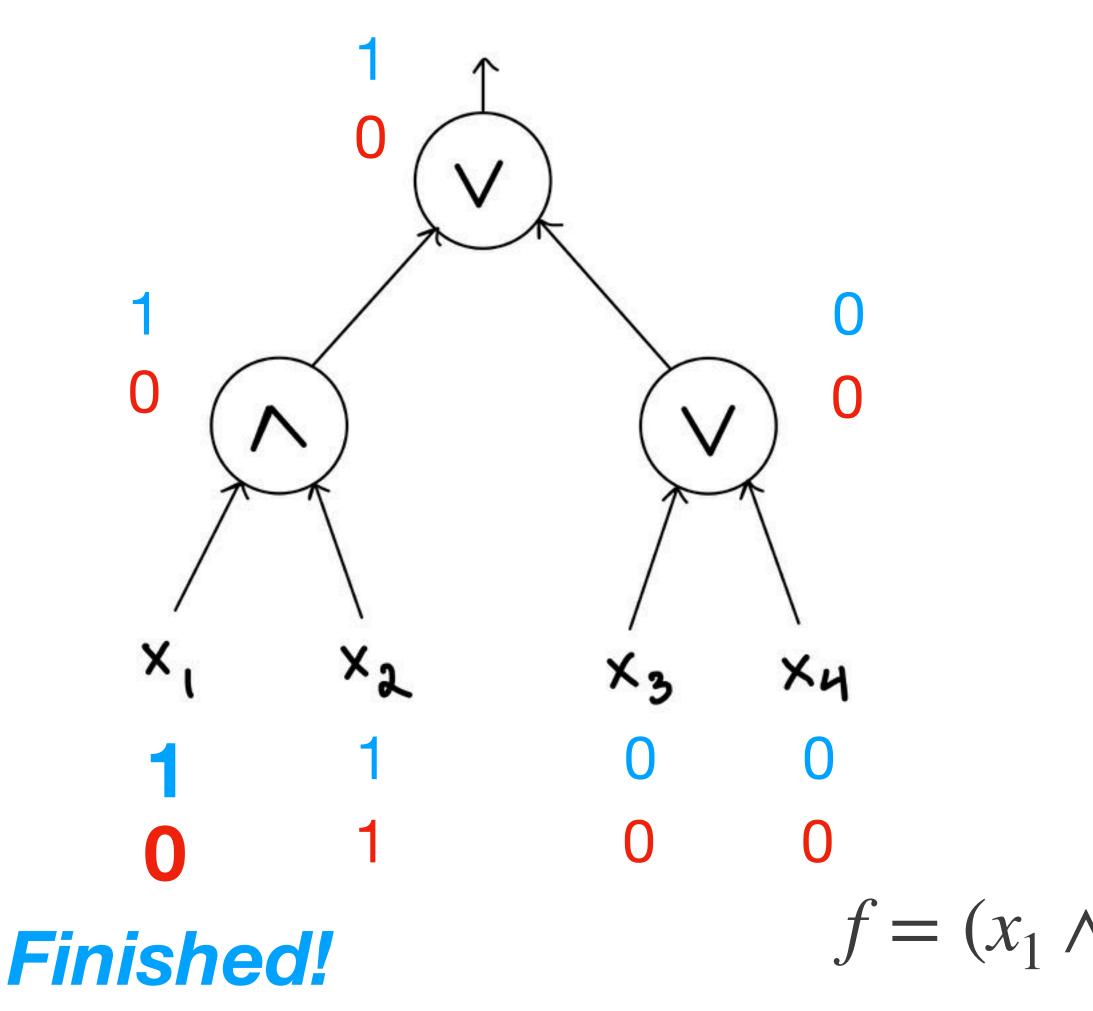


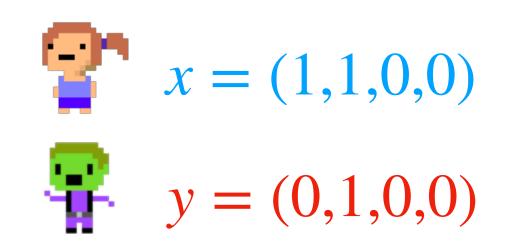
Boolean Formula for f

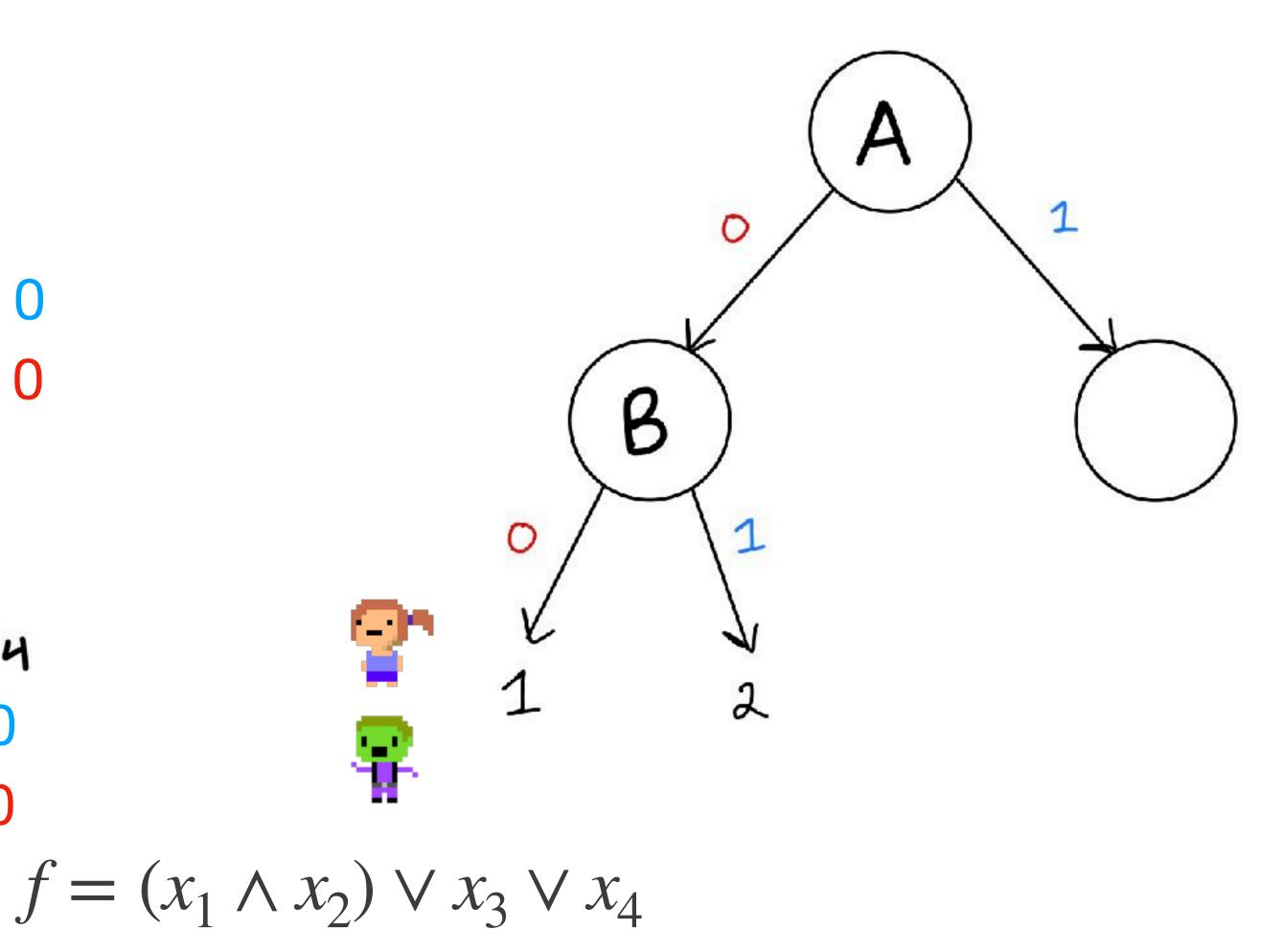




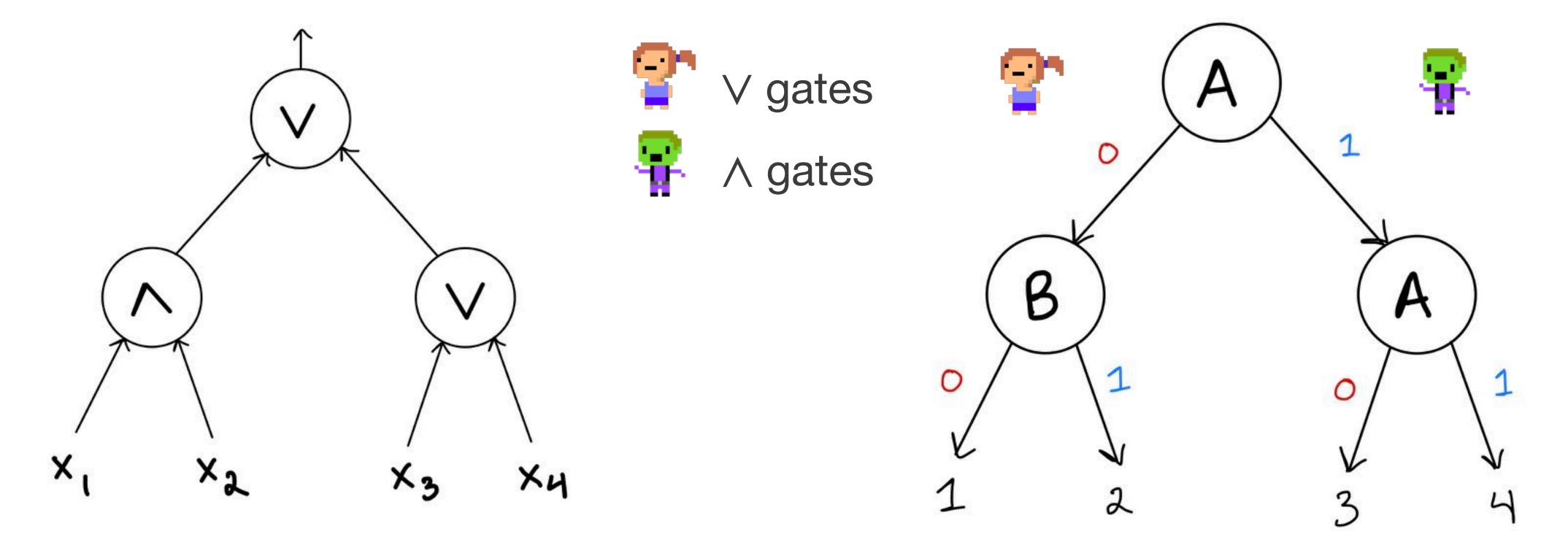
Boolean Formula for f





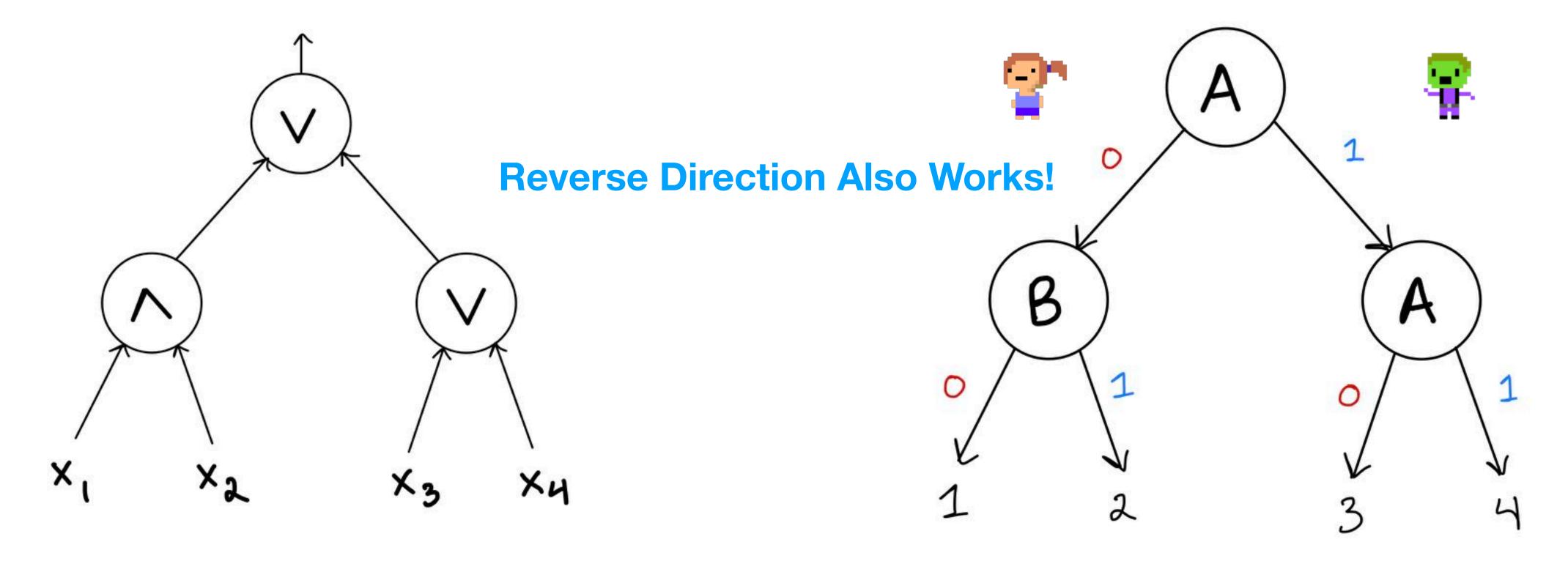


Boolean Formula for f



 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Boolean Formula for f



 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Theorem. Let $f: \{0,1\}^n \rightarrow \{0,1,*\}$ be a partial boolean function. Then

Correspondence is stronger: essentially the same object!

- Size $\leq s$, depth $\leq d$ Boolean formula for fif and only if
- Size $\leq s$, depth $\leq d$ communication protocol for KW(f)

Theorem. Let $f: \{0,1\}^n \to \{0,1,*\}$ be a partial monotone boolean function. Then Size $\leq s$, depth $\leq d$ monotone Boolean formula for fif and only if Size $\leq s$, depth $\leq d$ communication protocol for mKW(f)

Correspondence is stronger: essentially the same object!

Total Search Problems in Communication

- Let X, Y, O be finite, $\mathcal{S} \subseteq X \times Y \times O$.
- $\mathcal{S}(x, y) := \{ o \in O : (x, y, o) \in \mathcal{S} \}$ are feasible solutions for (x, y).
- S is a total search problem if $\forall (x, y) : S(x, y) \neq \emptyset$
- $FP^{cc}(S) := Communication Complexity of S$:= Depth of shallowest protocol solving \mathcal{S}
- $FP^{cc} := All \text{ total search problems } \mathcal{S} \text{ such that}$

 $\mathsf{FP}^{cc}(\mathcal{S}) = \log^{O(1)}(n)$

Communication TFNP

• A certificate cover of \mathcal{S} is a set of rectangles \mathscr{R} such that every $(x, y) \in X \times Y$ is consistent with some $R \in \mathcal{R}$.

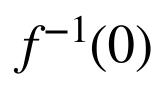
- NP Algorithm: Given $(x, y) \in X \times Y$,
 - Non-deterministically guess $R \in \mathcal{R}$ (log $|\mathcal{R}|$ bits)
 - Verify that $(x, y) \in R$ by exchanging 1 bit of communication

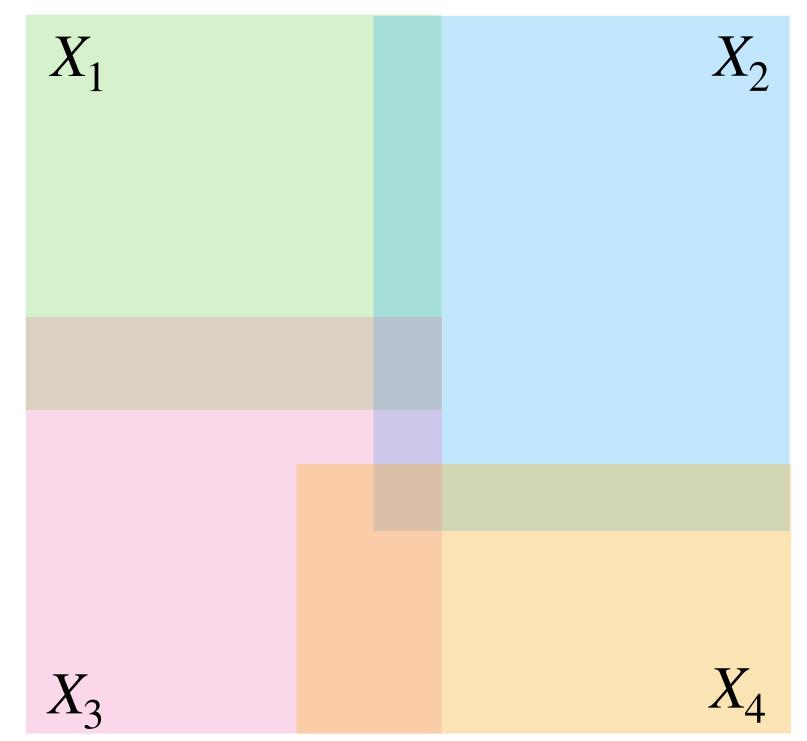
 $\mathsf{TFNP}^{dt}(\mathcal{S}) := \min_{\mathcal{R} \text{ cover}} \log |\mathcal{R}|$

What's So Special About mKW(f)?

- If $f: \{0,1\}^n \to \{0,1,*\}$ and $i \in [n]$ let
- $X_i := \{ x \in f^{-1}(1) : x_i = 1 \} \times \{ y \in f^{-1}(0) : y_i = 0 \}$
- The set $\{X_i : i \in [n]\}$ is a rectangle cover for mKW(f)
 - $\therefore \mathsf{TFNP}^{cc}(\mathsf{mKW}(f)) \le \log n$

 $f^{-1}(1)$





What's So Special About mKW(f)?

Fact [R90, G01]. Every rectangle cover $\mathscr{R} = \{R_1, \dots, R_n\}$ of a set $U \times V$ is equivalent to mKW_f for some partial monotone $f: \{0,1\}^n \to \{0,1,*\}.$

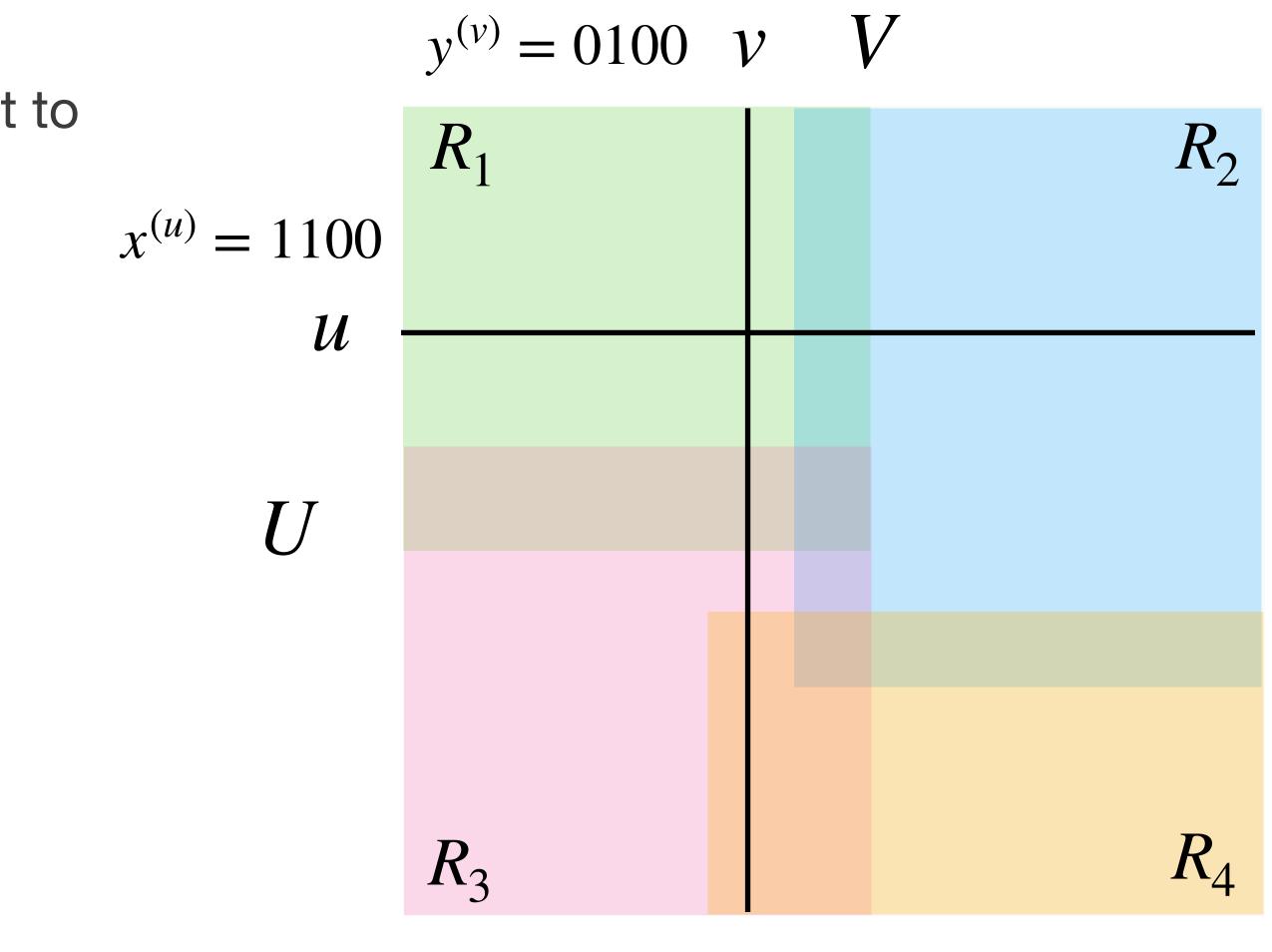
Proof. For each $u \in U$ let $x^{(u)} \in \{0,1\}^n$ be

$$x_i^{(u)} = 1 \Leftrightarrow u \in R_i$$

For each $v \in V$ let $y^{(v)} \in \{0,1\}^n$ be such that

$$y_i^{(v)} = 0 \Leftrightarrow v \in R_i$$

Define $f(x^{(u)}) = 1$ for all u, $f(y^{(v)}) = 0$ for all v.



 $U \times V$

What's So Special About mKW(f)?

Lesson

Any total search problem $\mathcal{S} \in \mathsf{TFNP}^{cc}$ can be reduced to solving mKW(f) for some partial $f: \{0,1\}^n \to \{0,1,*\}$.

(Converse holds, under reasonable assumptions.)

IJ

	\boldsymbol{V}	
<i>R</i> ₁		
R_3		

T Z

 $U \times V$

Summary

- Any $f: \{0,1\}^n \rightarrow \{0,1,*\}$ has a Karchmer-Wigderson game
- mKW(f) is complete* for TFNP^{cc}

• Comm. Protocols for $mKW(f) \equiv$ Boolean formulas computing f

Can we capture other circuit models?

These Stories Are The Same

- Bottom-up models (proofs, circuits)
 - are captured by
- Top-down algorithms (decision trees, comm. protocols)
- Search(F) and mKW(f)
 - Capture the complexity of these processes
 - Are canonical examples of their respective TFNP classes
- We now outline a general theory capturing both of these cases.

Part 3

The TFNP Program in Proof and Circuit Complexity

Classical Theory of TFNP

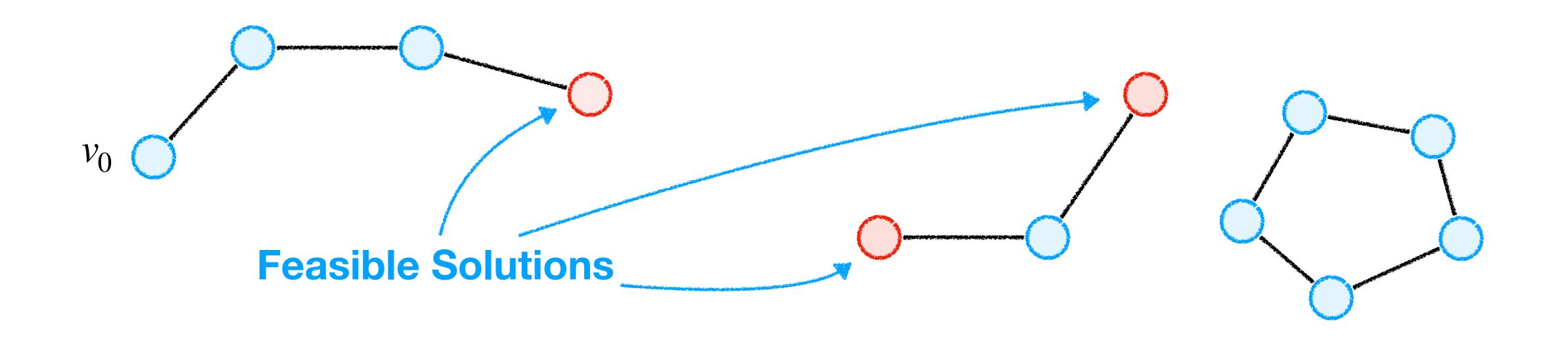
- Introduced by Papadimitriou [Pap 94]
- TFNP := Class of NP problems for which a witness always exists.
- Subclasses are defined via polynomial-time reductions to particular problems.
 - Problems often represent theorems used to prove existence results; e.g. Handshaking Lemma, Fixed-Point Theorems, Sperner's Lemma, ...
- Vibrant theory with many connections to other fields:
 - Game Theory, Cryptography, Combinatorics, Bounded Arithmetic, ...

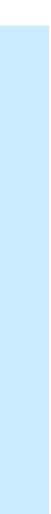
Handshaking Lemma.

Every graph has an even number of odd-degree nodes.

Input: Set of nodes V, $v_0 \in V$, neighbourhood function $N(u) \subseteq V$ with $|N(u)| \leq 2$. **Feasible Solutions:** Let G = (V, E) be s.t. $uv \in E$ iff $u \in N(v), v \in N(u)$.

- v_0 if $deg(v_0) \neq 1$, or
- $v \in V$ if $v \neq v_0$ and deg(v) = 1





Feasible Solutions: Let G = (V, E) be s.t. $uv \in E$ iff $u \in N(v), v \in N(u)$.

- v_0 if deg $(v_0) \neq 1$, or
- $v \in V$ if $v \neq v_0$ and deg(v) = 1
- Have poly-time Turing Machines N, S such that on input $x \in \{0,1\}^*$
 - N(x, u) := Neighbourhood of node u on input x
 - S(x, u) := Solution labelling node u on input x
- Given x, get graph G_x , solve PPA problem on that graph, output solutions

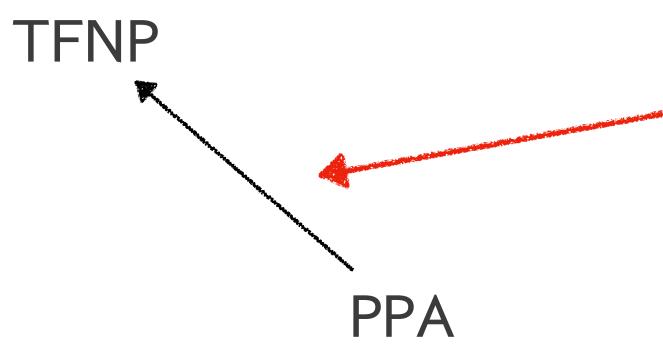
Input: Set of nodes V, $v_0 \in V$, neighbourhood function $N(u) \subseteq V$ with $|N(u)| \leq 2$.

Complexity class PPA contains total search problems reducible to this problem

Prominent Subclasses of TFNP

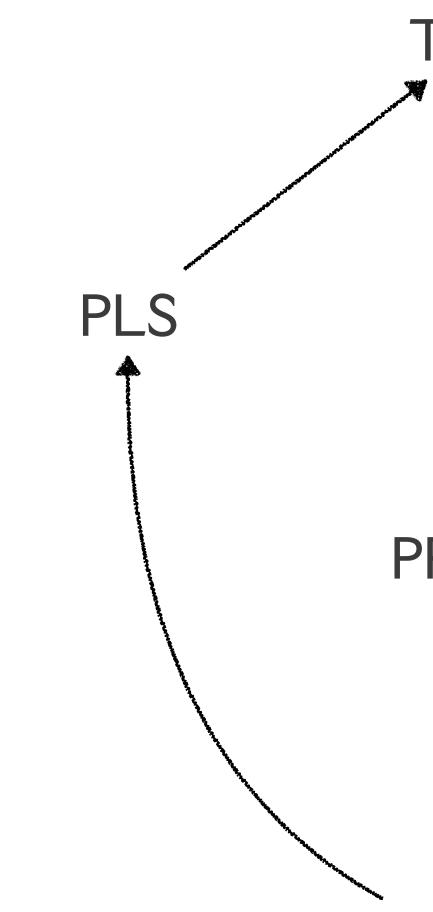
TFNP

Prominent Subclasses of TFNP

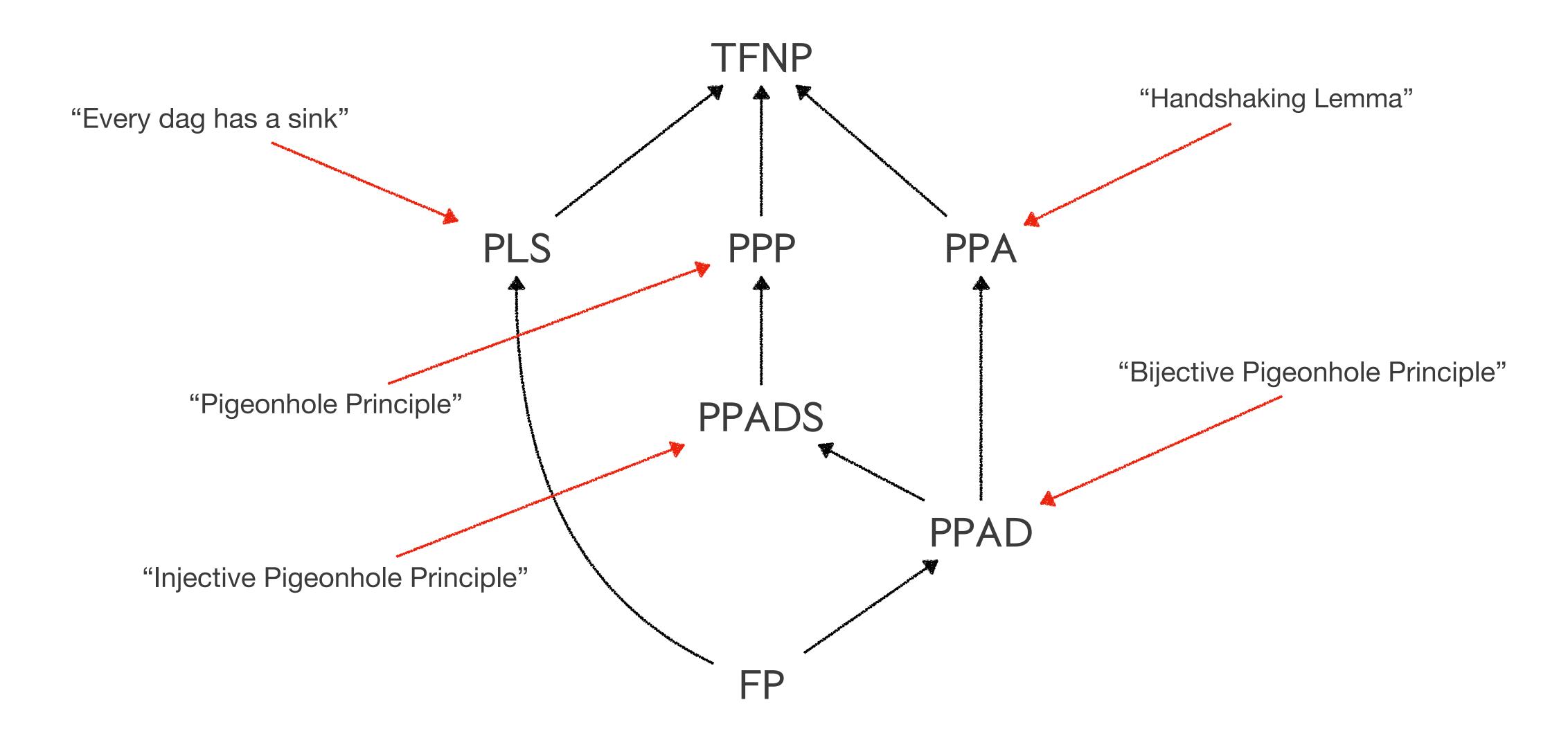


Guess solution, verify using neighbourhood functions

Prominent Subclasses of TFNP TFNP PLS PPP PPA PPADS PPAD FP



Prominent Subclasses of TFNP



Communication and Query TFNP

- We have seen the classes:
 - FP^{dt} := total S with $\log^{O(1)} n$ depth decision trees (tree resolution)
 - TFNP^{dt} := total S with $\log^{O(1)} n$ width certificates (narrow unsat. CNFs F)
 - $FP^{cc} := total S$ with $log^{O(1)} n$ depth comm. protocols (boolean formulas)
 - TFNP^{*cc*} := total *S* with $\log^{O(1)} n$ size rectangle covers (mKW(*f*))
- Can define other classes by reductions.
 - Use either shallow decision trees or shallow communication protocols, rather than Turing Machines.
 - Can characterize other proof systems and circuit classes!

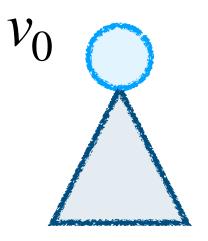
Query PPA

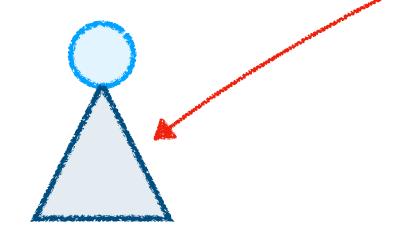
Feasible Solutions: Let G = (V, E) be s.t. $uv \in E$ iff $u \in N(v), v \in N(u)$.

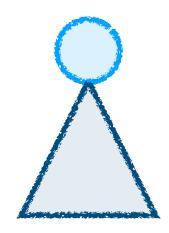
- v_0 if deg $(v_0) \neq 1$, or
- $v \in V$ if $v \neq v_0$ and deg(v) = 1
- To solve $\mathcal{S} \subseteq \{0,1\}^n \times O$, we reduce to above using decision trees:
 - $N_{\mu}(x) :=$ Decision tree for u, outputs neighbourhood of node u on input x
 - $o_u \in O :=$ Solution of \mathcal{S} labelling node u on input x
- graph, output solutions labelling feasible solutions of G_{x}

Input: Set of nodes V, $v_0 \in V$, neighbourhood function $N(u) \subseteq V$ with $|N(u)| \leq 2$.

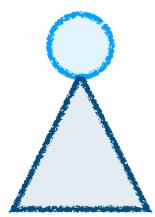
• Given x, run all decision trees in parallel to get graph G_x , solve PPA problem on that

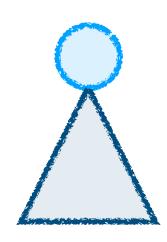




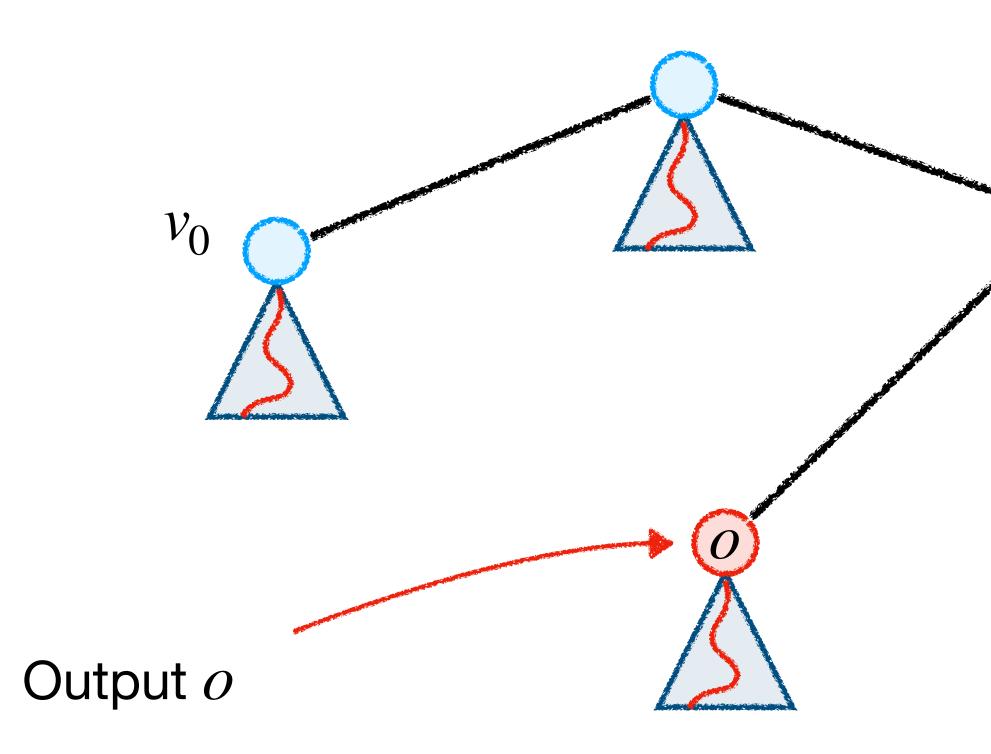


Decision trees querying $x \in \{0,1\}^n$

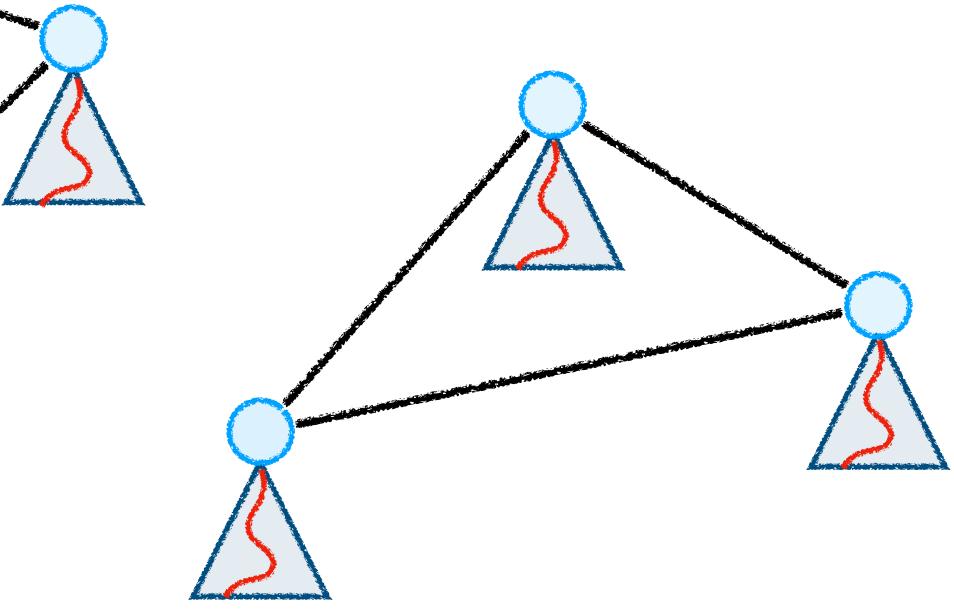




 $\mathcal{S} \subseteq \{0,1\}^n \times O$



Evaluate all trees, output labels of feasible solutions



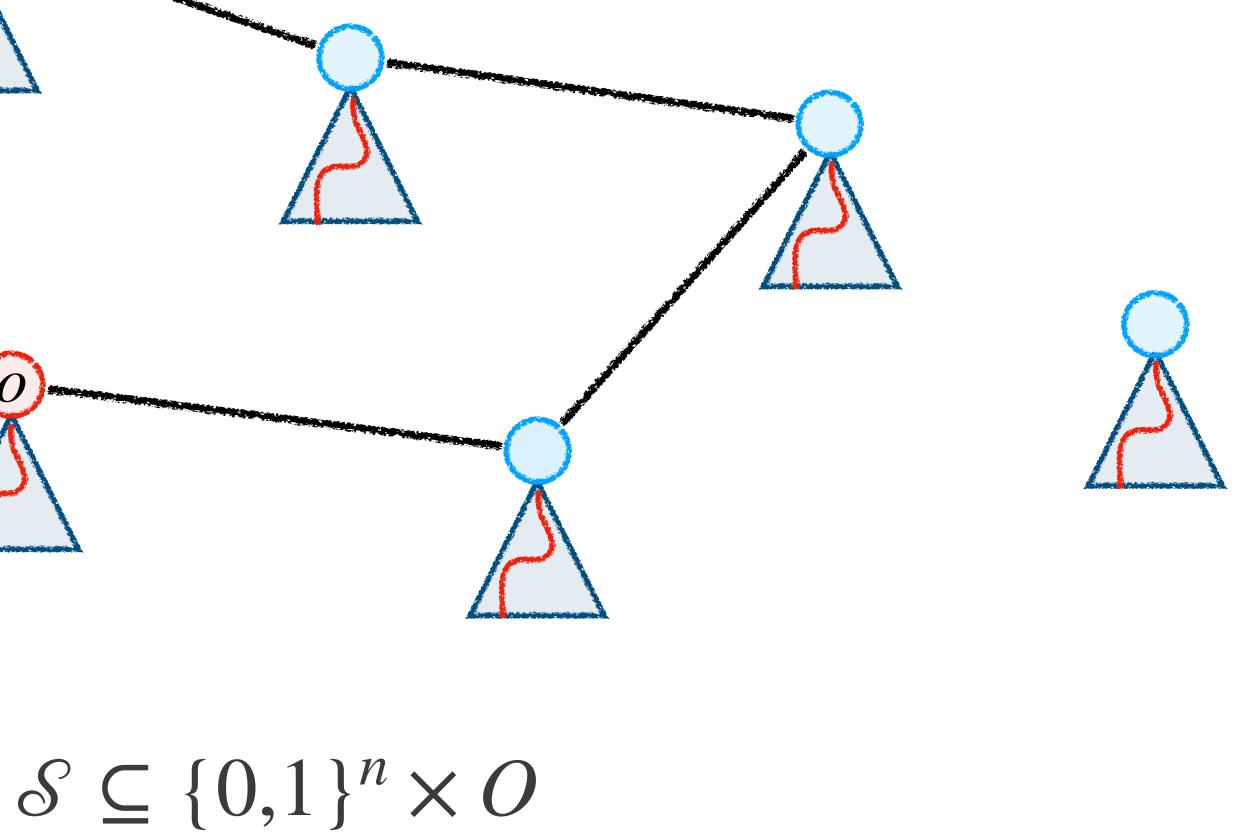
 $\mathcal{S} \subseteq \{0,1\}^n \times O$

v_0 0

Output *o*, *o*', *o*''

Evaluate all decision trees, output labels of feasible solutions

On a different input...

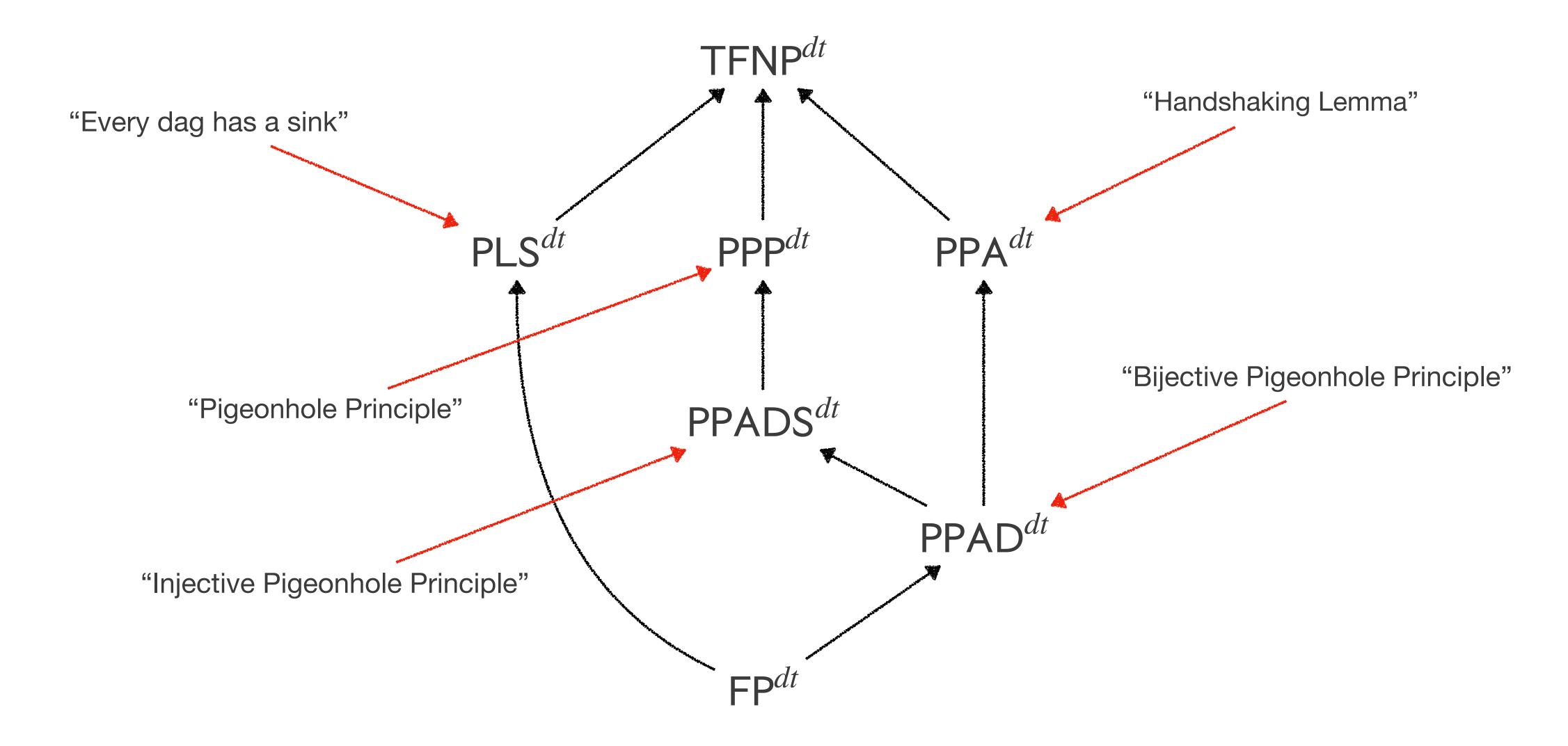


Query PPA

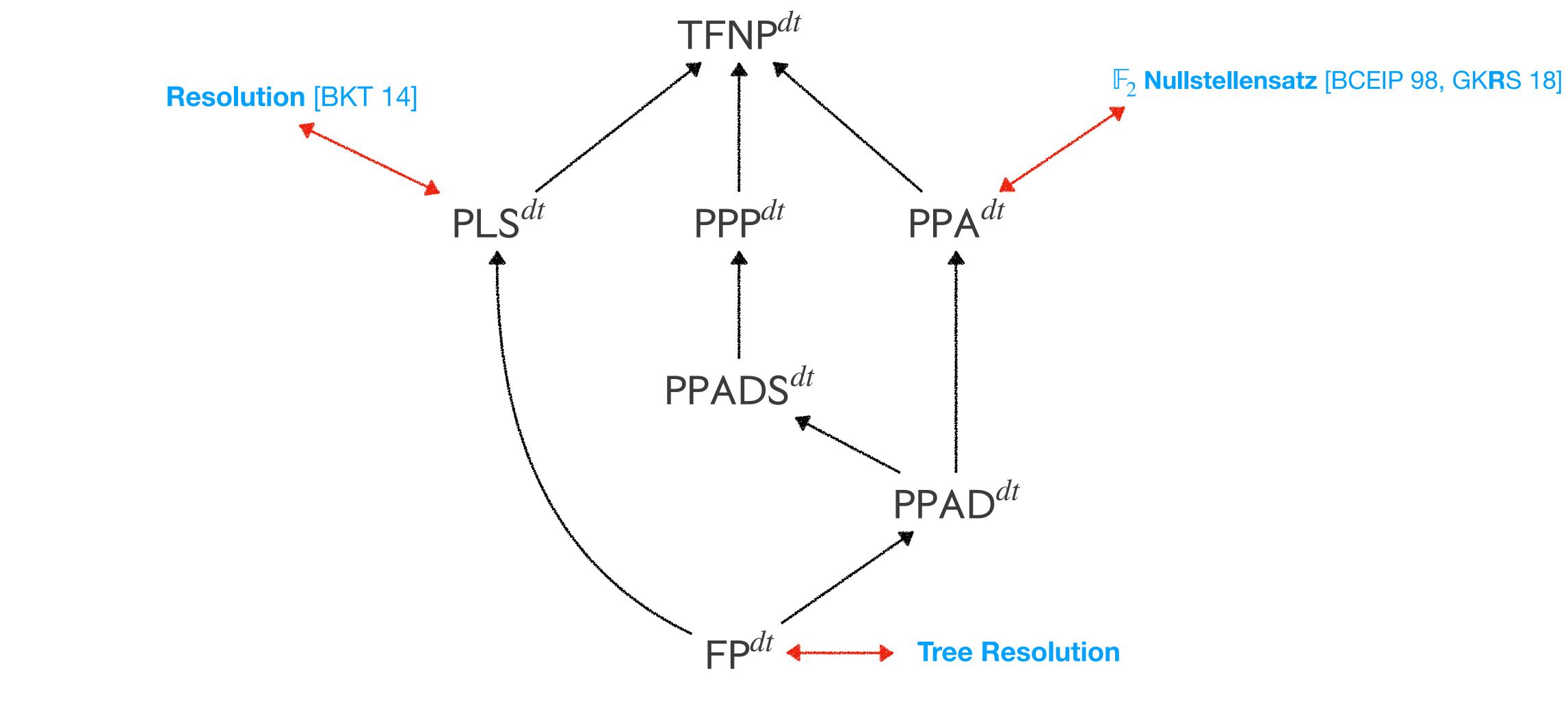
- degree Nullstellensatz refutation over \mathbb{F}_2
- [GKRS 18] Observed the converse: low-degree Nullstellensatz implies an efficient reduction to PPA
 - Theorem. [BCEIP 98, GKRS 18] Let F be an unsatisfiable CNF. There is a size $\leq s$, degree $\leq d \mathbb{F}_2$ -Nullstellensatz refutation of F iff Search(F) can be depth O(d)reduced to PPA on $s^{O(1)}$ vertices.

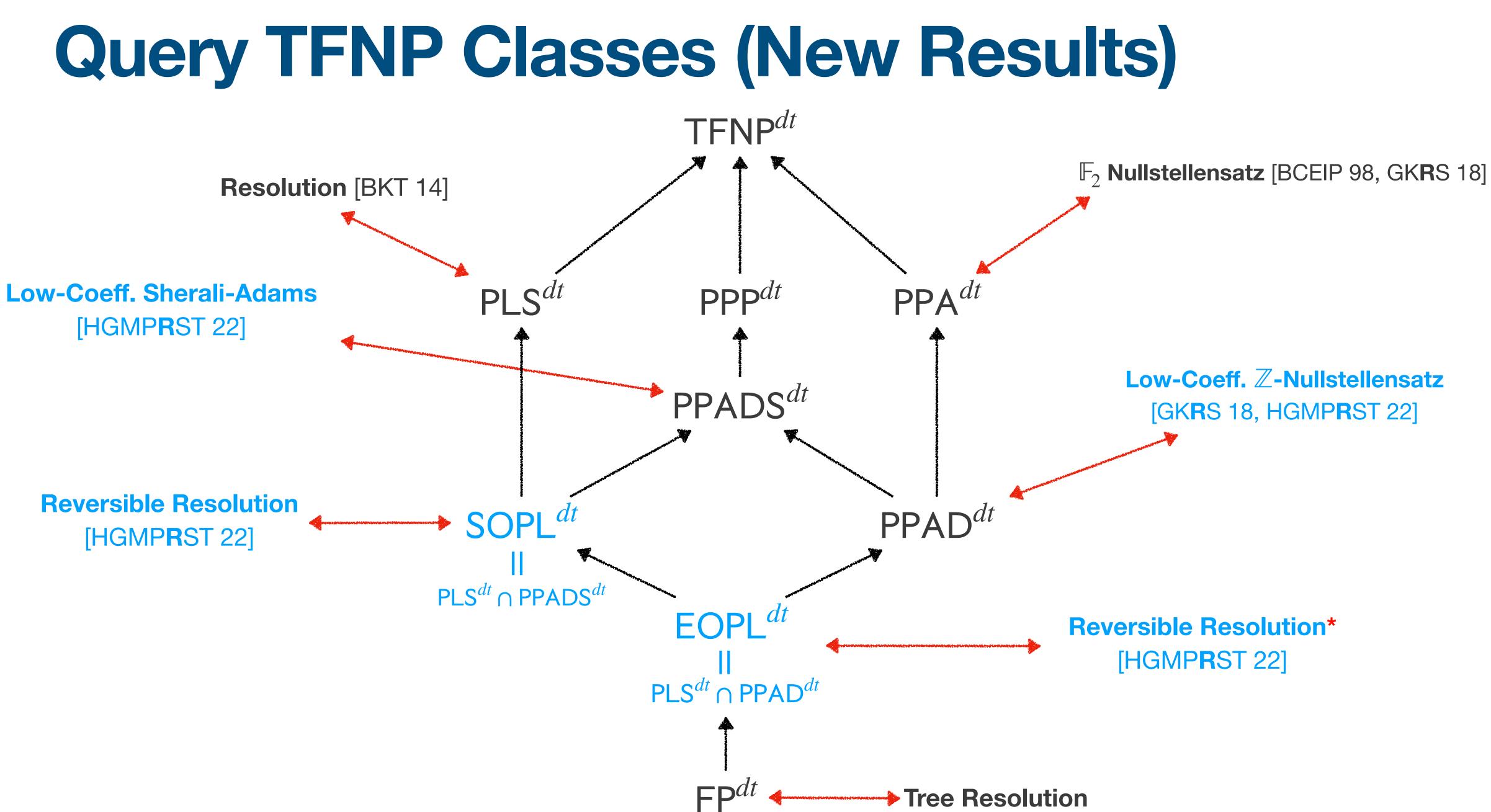
• [BCEIP 98] Observed that if $Search(F) \in PPA^{dt}$ then F has a low-

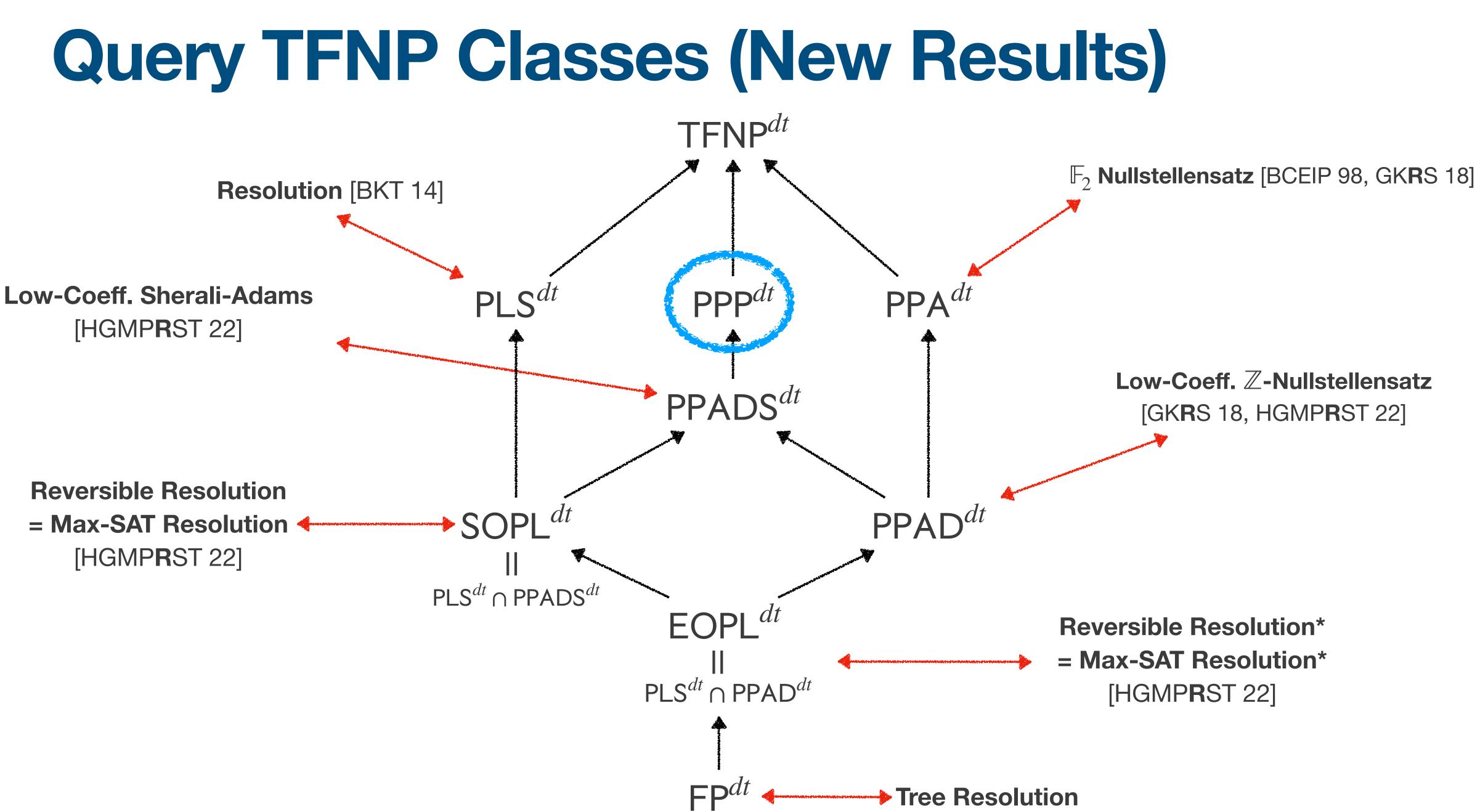
Query TFNP Classes



Query TFNP Classes







Reversible Resolution = Max-SAT Resolution Single "reversible" resolution rule:

• From $C \lor \ell, C \lor \overline{\ell}$ deduce C or vice-versa, clauses are consumed!

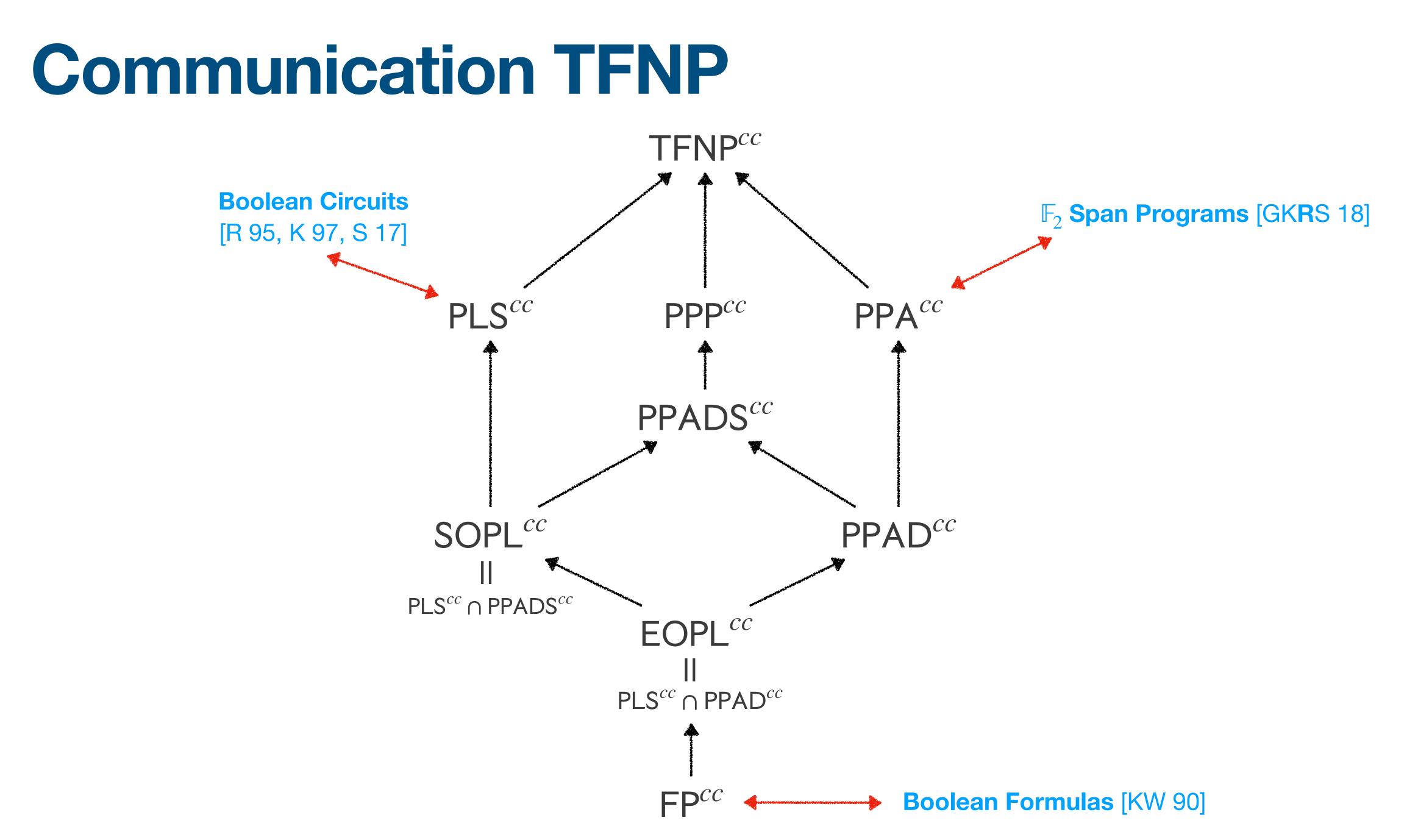
Theorem. [HGMPRST 22] There is a size-s, width-w Reversible Resolution proof of F

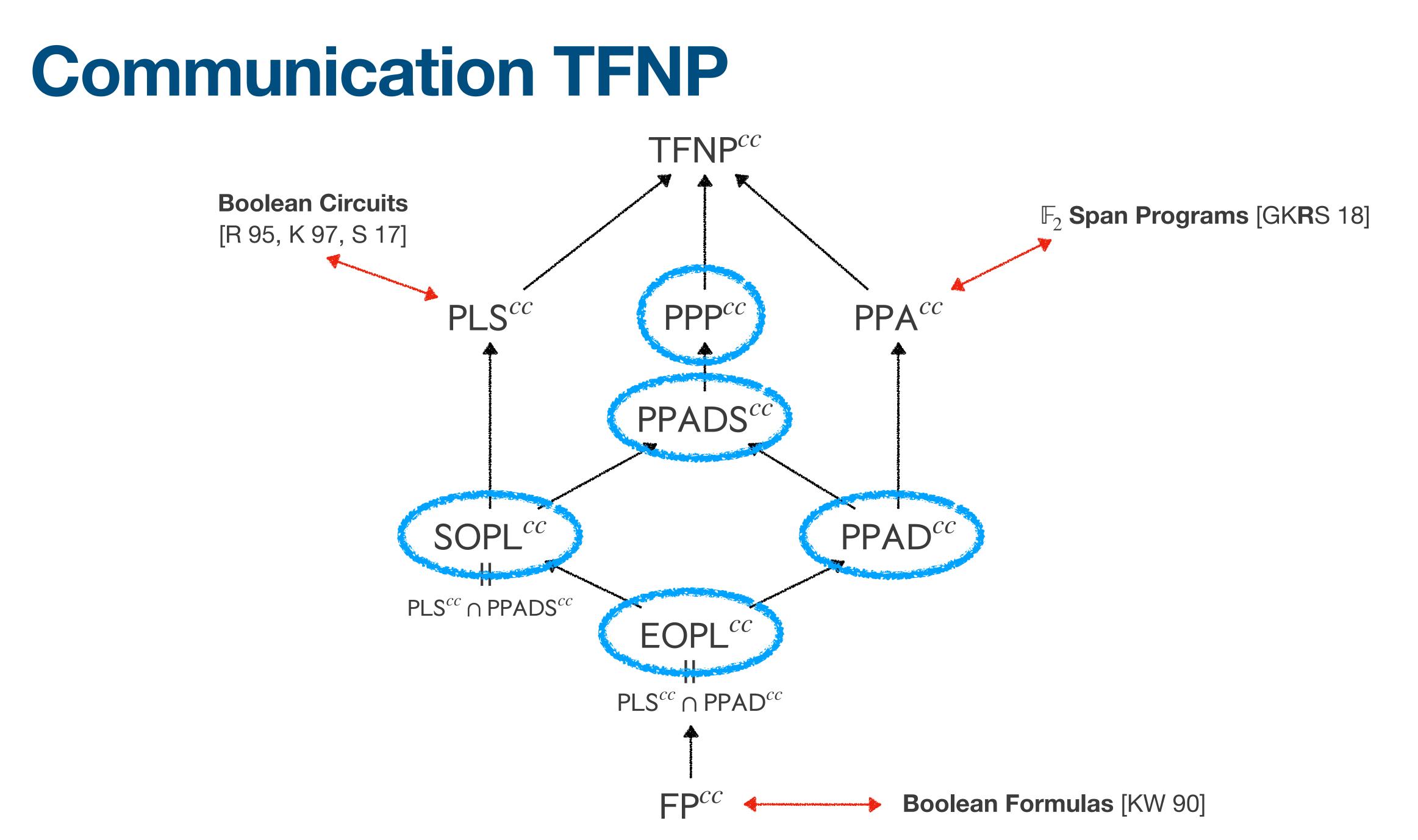
low-coefficient Sherali-Adams proof.

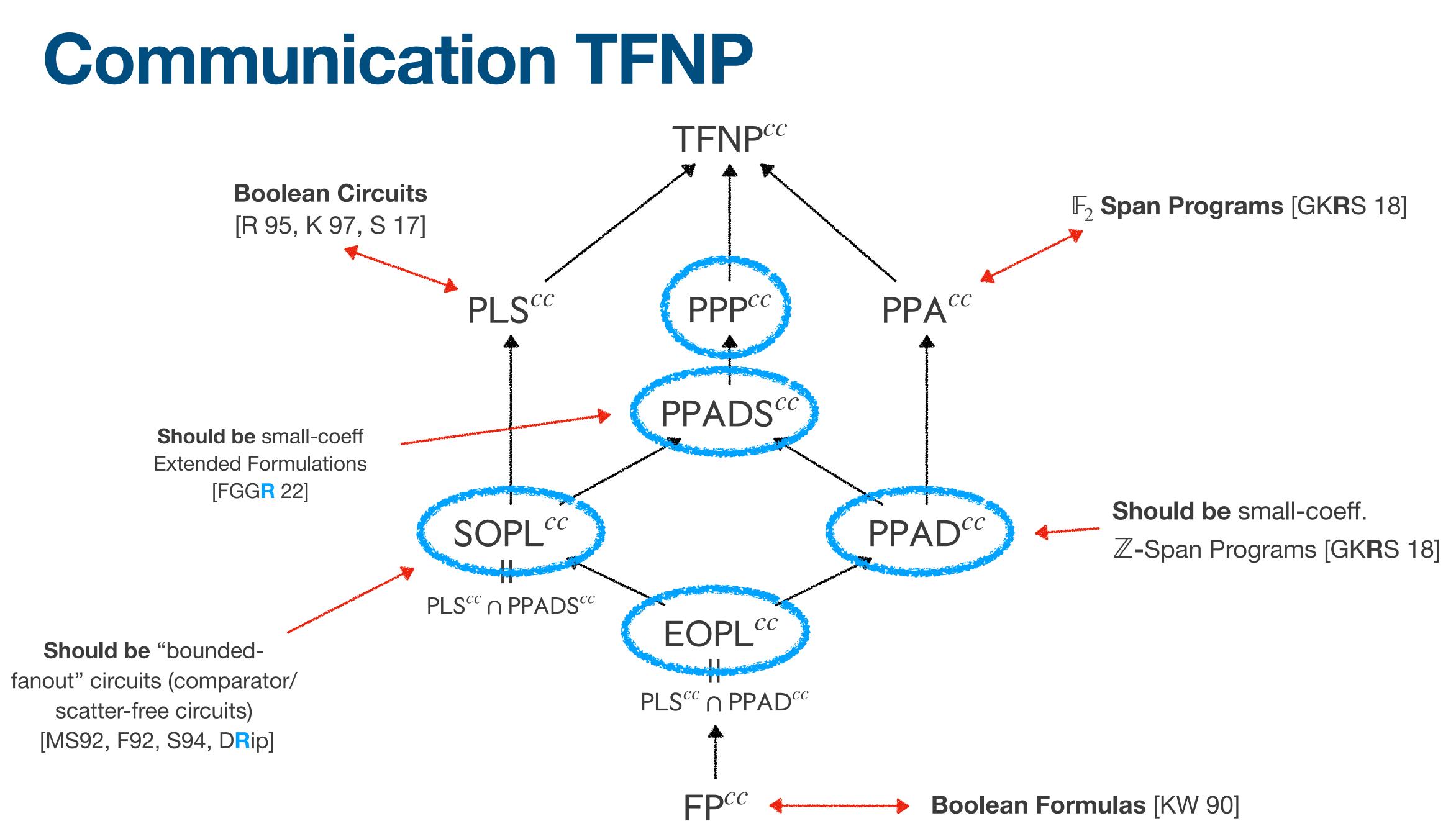
 $C \lor \ell C \lor \overline{\ell}$ C

if and only if

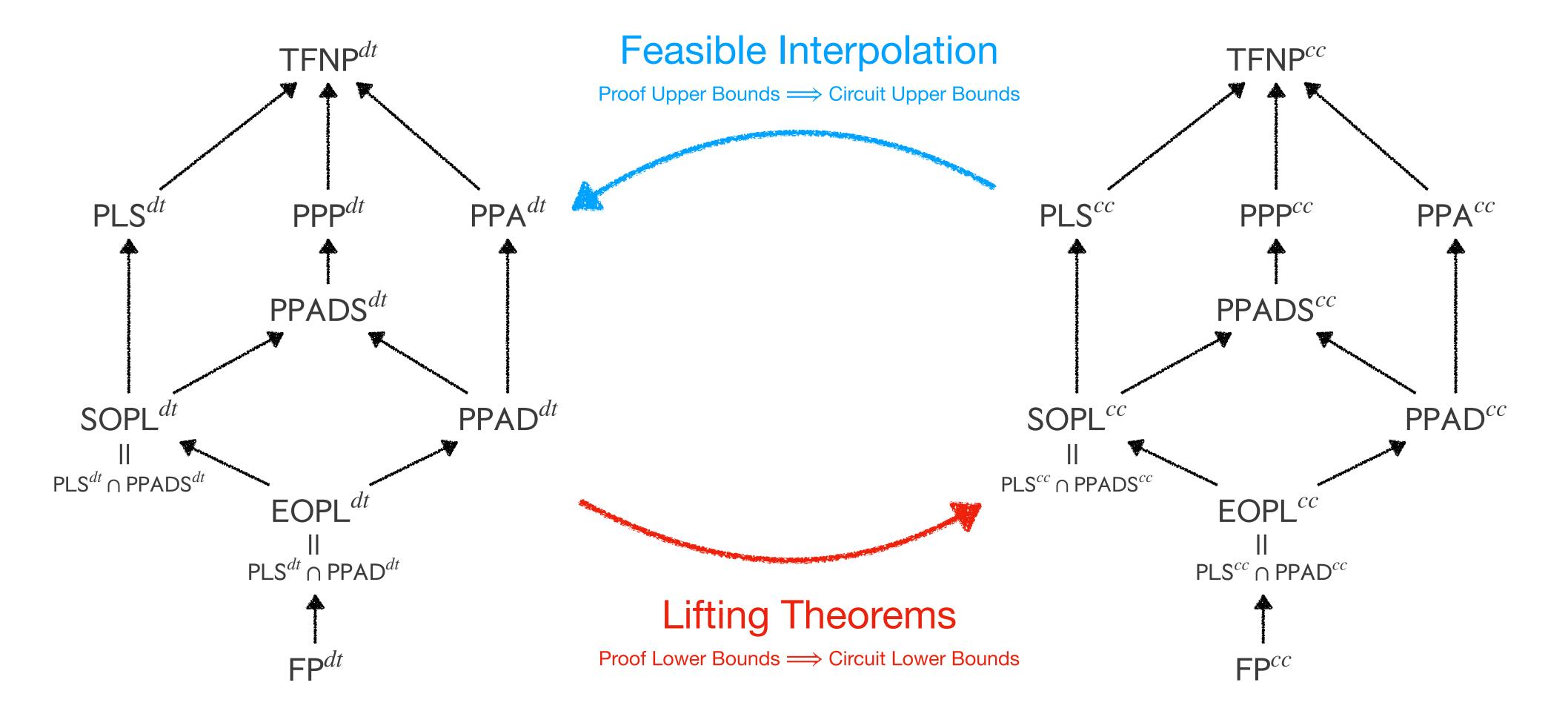
there is a size $s^{O(1)}$, width-O(w) Resolution proof and a size- $s^{O(1)}$, degree-O(w)







Query TFNP



Communication TFNP

"Feasible Interpolation"

- Many interesting results from relating two worlds
- If $\mathcal{S} \subseteq \{0,1\}^n \times O$ is a query search problem, let $[n] = X \cup Y$ be variable partition
- Define $\mathcal{S}^{X,Y} \subseteq \{0,1\}^X \times \{0,1\}^Y \times O$ as a communication problem, so
 - Alice gets $x \in \{0,1\}^X$, Bob gets $y \in \{0,1\}^Y$, solutions are $\mathcal{S}^{X,Y}(x,y) = \mathcal{S}(xy)$
- Easy to see that for any TFNP class \mathscr{C} , $\mathscr{S} \in \mathscr{C}^{dt} \implies \mathscr{S}^{X,Y} \in \mathscr{C}^{cc}$
- Translates circuit lower bounds to proof lower bounds
 - Closely related to classical feasible interpolation results [K97, P97, BPR00,...]
 - Construction underlies Cutting Planes I.bs for random CNFs [FPPR 16, HP16]

Lifting Theorems

- Query-to-communication lifting theorems give the other direction
- $\mathcal{S} \subseteq \{0,1\}^n \times O$ is a query search problem, $g: X \times Y \to \{0,1\}^n$ is a gadget
- Define $\mathcal{S} \circ g \subseteq X^n \times Y^n \times O$ by $(\mathcal{S} \circ g)(x, y) = \mathcal{S}(g^n(x, y))$
 - Alice gets $x \in X^n$, Bob gets $y \in Y^n$, evaluate $z = g^n(x, y)$ and solve $\mathcal{S}(z)$

Theorem. [RM 99, GPW 14] Let $\mathcal{S} \subseteq \{0,1\}^n \times O$ be a search problem, let $\operatorname{Ind}_m : [m] \times \{0,1\}^m \to \{0,1\}$ by $Ind_m(x, y) = y_x$. If $m = n^{O(1)}$ then

 $\mathsf{FP}^{cc}(\mathcal{S} \circ \mathsf{Ind}_m)$

• If g "complex" then Alice and Bob's best strategy is to simulate the query strategy

$$_{m}) = \Theta(\mathsf{FP}^{dt}(\mathcal{S}) \cdot \log m)$$

Lifting Theorems

Proof Complexity Size		Proof Complexity Degree	Circuit Complexity Measure	Gadget	Citation
	Tree-Like Resolution Size	Resolution Depth	Monotone Formula Size	Index, Low-Discrepancy	[Folklore, RM99, GPW14, CKFMP19]
	Resolution Size	Resolution Width	Monotone Circuit Size	Index	[GGKS17]
	Nullstellensatz Monomial Size	Nullstellensatz Degree	Monotone Span Program Size	Any High Rank	[P <mark>R</mark> 18, dRMNP <mark>R</mark> 20]
	Sherali-Adams Monomial Size	Sherali-Adams Degree	Linear Extension Complexity	Index, Inner Product*	[GLMW14, CLRS14, KMR17] (Incomplete)
	Sums-of-Squares Monomial Size	SOS Degree	Semidefinite Extension Complexity	Index*	[LRS15] (<mark>Incomplete</mark>)

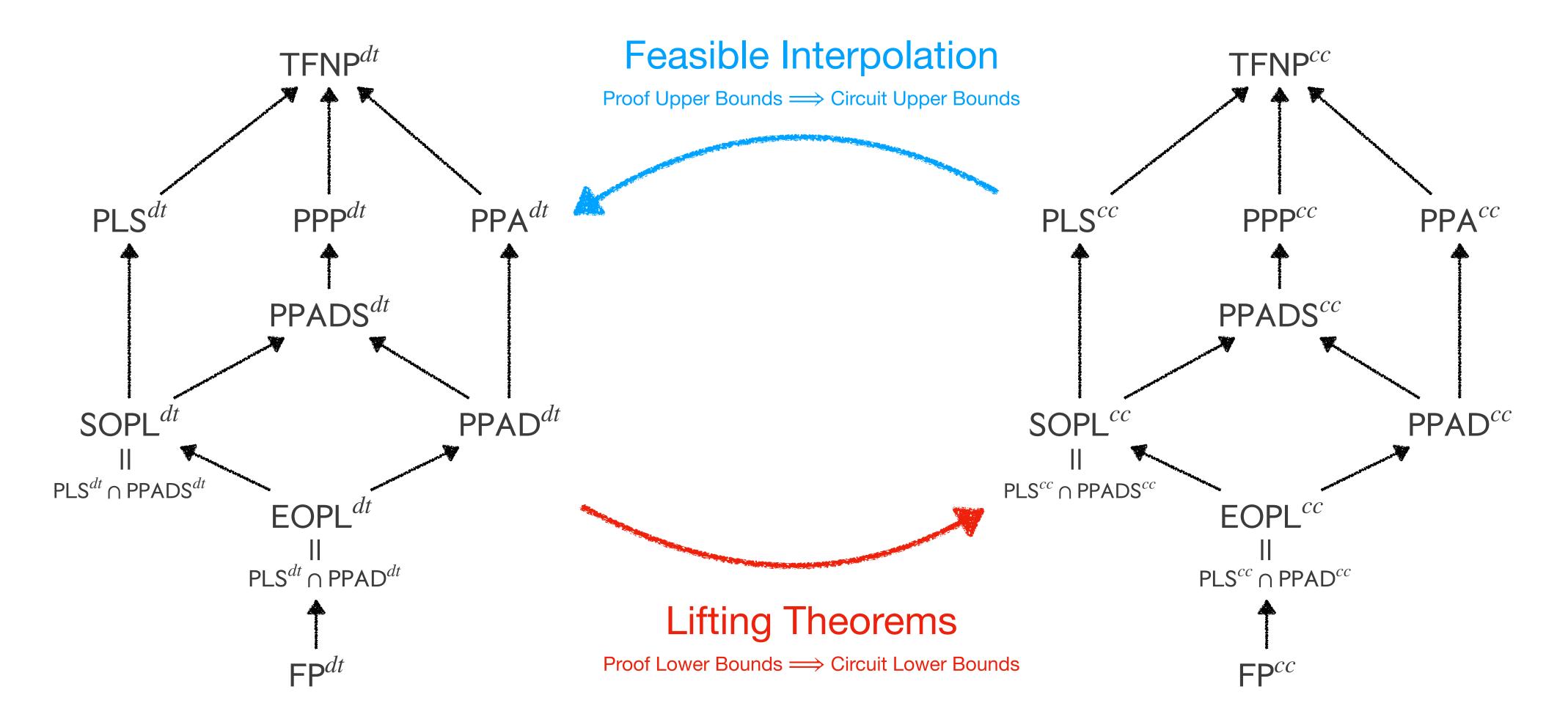
TFNP Program in Proof and Circuit Complexity

- All in all, this suggests a research program!
- Use TFNP classes to characterize circuit and proof classes.
- Relate these classes by feasible interpolation and lifting theorems
- Use intuition from one setting to prove results in the other setting.
 - Many TFNP classes are not characterized in either setting.
- Intersection theorems are particularly interesting!
 - Reversible Resolution = Resolution \cap Sherali-Adams* [HGMPRST 22]

Open Problems

- What TFNP problem captures Sums-of-Squares?
- What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)
- Characterize more circuit and proof classes using TFNP classes.
- Can this approach (communication and query complexity) say anything novel about very powerful proof systems?
- What about non-monotone complexity? Can anything be said?

Query TFNP



Thanks for Listening!

Communication TFNP