
Robert Robere
School of Computer Science
McGill University

Proofs, Circuits, Communication

Reflections on Proofs in
Algorithms and Complexity

FOCS 2021

February 8, 2022

Starting Point: Lifting Theorems
• Recent explosion of lifting theorems in query and communication complexity

Decision Tree Communication Protocol

f : {0,1}n → {0,1} f ∘ gn : Xn × Yn → {0,1}

 is a “complex gadget”g : X × Y → {0,1}

Protocol simulates Tree

For “complex”  
this is best strategy!

g

Lifting Theorems and Proof Complexity
• Many new results in proof and circuit complexity using lifting theorems 

[GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]

• The proofs of these results place total search problems at center stage!

1. The False Clause Search Problem for unsatisfiable CNF

2. The Karchmer-Wigderson Game for boolean functions

• To apply techniques, need query models that capture proof systems,
communication models that capture circuit classes.

• Recent work ([GKRS18] building on [BCEIP98], closely related to [BK94, K94, …])
suggested using classes as a guide to find these models.

𝖲𝖾𝖺𝗋𝖼𝗁(F) F

𝖪𝖶(f) f

𝖳𝖭𝖥𝖯

Proof Complexity Circuit Complexity

TFNP

This talk is here

Goal for Today
• Tell two stories:

• The False Clause Search Problem and Proof Complexity

• The Karchmer-Wigderson Games and Circuit Complexity

• These are “two pieces” of a bigger theory of query/comm.

• Outline a research program using as a guide to capture proof
systems and circuit classes.

• (Close thematic links with Sam’s and Neil’s talks earlier.)

𝖳𝖥𝖭𝖯

𝖳𝖥𝖭𝖯

Part 1

Proofs and the False Clause Search Problem

False Clause Search Problem
• Focus on complexity of refuting unsatisfiable CNF formulas

F = C1 ∧ C2 ∧ ⋯ ∧ Cm

• Each is a clause (disjunction of boolean literals)

• has an associated total search problem:

Ci

F

𝖲𝖾𝖺𝗋𝖼𝗁(F) ⊆ {0,1}n × [m]

Given , find such that .x ∈ {0,1}n i ∈ [m] Ci(x) = 0

• Query Complexity of Proof Complexity of 𝖲𝖾𝖺𝗋𝖼𝗁(F) ≡ F

Resolution Proofs
• Lines are clauses.

• New lines deduced using

• Resolution Rule:

• Length: Number of lines.

• Depth: Length of longest path.

• Proof is tree-like if each clause is 
used at most once.

• Input clauses can be copied any number 
of times

C ∨ x, D ∨ x ⊢ C ∨ D

Example.

Length: 10, Depth: 4

F = x1 ∧ x2 ∧ (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4)

Resolution Proofs
• Lines are clauses.

• New lines deduced using

• Resolution Rule:

• Length: Number of lines.

• Depth: Length of longest path.

• Proof is tree-like if each clause is 
used at most once.

• Input clauses can be copied any number 
of times

C ∨ x, D ∨ x ⊢ C ∨ D

Example.

Length: 10, Depth: 4

F = x1 ∧ x2 ∧ (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4)

Decision Trees for 𝖲𝖾𝖺𝗋𝖼𝗁(F)
• Size: Number of nodes

• Depth: Length of longest path

• Given boolean assignment, 
follow unique path consistent 
with that assignment, output
violated clause.

• Decision tree for is related to
the DPLL method for solving SAT.

𝖲𝖾𝖺𝗋𝖼𝗁(F)
F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

𝖲𝖾𝖺𝗋𝖼𝗁(F) ⊆ {0,1}n × [m]
Given , find such that .x ∈ {0,1}n i ∈ [m] Ci(x) = 0

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Query resolved variable

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Invariant:

Assignment falsifies clause

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Invariant:

Assignment falsifies clause

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Query resolved variable

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Variable Resolved Variable Queried≡

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

x2 = 0

Partial assignment falsifies
corresponding clause

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

x1 = 0, x2 = 0

Partial assignment falsifies
corresponding clause

Tree-Like Resolution Decision Trees≡
Tree-Like Resolution of F Decision Tree for Search(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Reverse Direction Also Works!

Tree-Like Resolution Decision Trees≡
Theorem. Let be an unsatisfiable CNF formula. Then

Size , depth Tree-like Res. refutation of  
if and only if  

Size , depth Decision Tree for

F

≤ s ≤ d F

≤ s ≤ d 𝖲𝖾𝖺𝗋𝖼𝗁(F)

Correspondence is stronger: essentially the same object!

Total Search Problems in Query Complexity
• Let be finite, .

• is set of feasible solutions for .

• is a total search problem if

• Query Complexity of  
 Depth of shallowest decision tree solving

• All total search problems such that

O 𝒮 ⊆ {0,1}n × O

𝒮(x) := {o ∈ O : (x, o) ∈ 𝒮} x

𝒮 ∀x : 𝒮(x) ≠ ∅

𝖥𝖯dt(𝒮) := 𝒮
:= 𝒮

𝖥𝖯dt := 𝒮

𝖥𝖯dt(𝒮) = logO(1)(n)

Query TFNP
• A certificate of is a partial restriction s.t. 𝒮 ρ ∈ {0,1,*}n

 consistent with : ∃o ∈ O, ∀x ∈ {0,1}n ρ o ∈ 𝒮(x)

• A certificate cover of is a set of certificates such that every
 is consistent with some .

𝒮 R
x ∈ {0,1}n ρ ∈ R

 𝖳𝖥𝖭𝖯dt(𝒮) := min
R cover

max
ρ∈R

| 𝖿𝗂𝗑𝖾𝖽(ρ) |

• Algorithm: Given ,

• Non-deterministically guess ,

• Verify is consistent by querying fixed coordinates in

𝖭𝖯 x ∈ {0,1}n

ρ ∈ R

x ρ

Query TFNP
• A certificate of is a partial restriction s.t. 𝒮 ρ ∈ {0,1,*}n

 consistent with : ∃o ∈ O, ∀x ∈ {0,1}n ρ o ∈ 𝒮(x)

• A certificate cover of is a set of certificates such that every
 is consistent with some .

𝒮 R
x ∈ {0,1}n ρ ∈ R

 𝖳𝖥𝖭𝖯dt(𝒮) := min
R cover

max
ρ∈R

| 𝖿𝗂𝗑𝖾𝖽(ρ) |

• all total search problems with
𝖳𝖥𝖭𝖯dt := 𝒮

𝖳𝖥𝖭𝖯dt(𝒮) = logO(1) n

What’s So Special About ?𝖲𝖾𝖺𝗋𝖼𝗁(F)
• For unsat. , clauses are certificates:

• Any total can be reduced to solving for some :

• Given and certificate cover , define where is the

maximum-width clause falsified by .

• Solving gives a certificate for which then lets us solve . 
Converse also holds, under reasonable assumptions.

F = C1 ∧ C2 ∧ ⋯ ∧ Cm

∴ 𝖳𝖥𝖭𝖯dt(𝖲𝖾𝖺𝗋𝖼𝗁(F)) ≤ 𝗐𝗂𝖽𝗍𝗁(F)

𝒮 𝖲𝖾𝖺𝗋𝖼𝗁(F) F

𝒮 R FR := ∧ρ∈R Cρ Cρ

ρ

𝖲𝖾𝖺𝗋𝖼𝗁(FR) 𝒮 𝒮

Summary
• Any unsatisfiable CNF has an associated

• Decision trees for Tree-Res. refutations of

• is complete* for

F 𝖲𝖾𝖺𝗋𝖼𝗁(F)

𝖲𝖾𝖺𝗋𝖼𝗁(F) ≡ F

𝖲𝖾𝖺𝗋𝖼𝗁(F) 𝖳𝖥𝖭𝖯dt

Can we capture other proof systems?

Part 2

Circuits and the Karchmer-Wigderson Game

Karchmer-Wigderson Games

𝖪𝖶(f) ⊆ f −1(1) × f −1(0) × [n]

Given , find such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi ≠ yi

• Focus on complexity of boolean functions

• monotone if (coordinate-wise) implies

• is partial if , means we “don’t care”.

• has an associated total search problem [KW 90]

f : {0,1}n → {0,1}
f x ≤ y f(x) ≤ f(y)

f f : {0,1}n → {0,1,*} *

f

• Circuit Complexity of Communication Complexity of f ≡ 𝖪𝖶(f)

Karchmer-Wigderson Games
• Focus on complexity of boolean functions

• monotone if (coordinate-wise) implies

• is partial if , means we “don’t care”.

• has an associated total search problem [KW 90]

• If is monotone, then there is a more restricted game:

f : {0,1}n → {0,1}
f x ≤ y f(x) ≤ f(y)

f f : {0,1}n → {0,1,*} *

f
f

𝗆𝖪𝖶(f) ⊆ f −1(1) × f −1(0) × [n]

Given , find such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi > yi

• Circuit Complexity of Communication Complexity of f ≡ 𝖪𝖶(f)

Boolean Circuits
• Device to compute boolean functions

• Starting* from boolean literals, use and
gates to compute a target function.

• Size Number of gates

• Depth Length of longest root-leaf path

• Circuit is a formula if no gate re-used.

∧ ∨

:=

:=

* These are technically DeMorgan circuits, but are polynomially equivalent to standard boolean circuits.

Boolean Circuits
• Device to compute boolean functions

• Starting* from boolean literals, use and
gates to compute a target function.

• Size Number of gates

• Depth Length of longest root-leaf path

• Circuit is a formula if no gate re-used.

∧ ∨

:=

:=

* These are technically DeMorgan circuits, but are polynomially equivalent to standard boolean circuits.

Communication Protocols for 𝖪𝖶(f)
• Two players, Alice and Bob

• A. , B.

• Communicate by sending bits over a
channel, goal is to find

• Protocol: Tree telling Alice and Bob who
speaks at each point.

← x ∈ f −1(1) ← y ∈ f −1(0)

i : xi ≠ yi
Alice

x ∈ f −1(1)

Bob

y ∈ f −1(0)

{0,1} {0,1}

i
(x, y, i) ∈ 𝖪𝖶(f)

𝖪𝖶(f) ⊆ f −1(1) × f −1(0) × [n]
Given , find such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi ≠ yi

Communication Protocols for 𝖪𝖶(f)
• Two players, Alice and Bob

• A. , B.

• Communicate by sending bits over a
channel, goal is to find

• Protocol: Tree telling Alice and Bob who
speaks at each point.

• Depth Length of longest path

• Size Number of nodes in tree

← x ∈ f −1(1) ← y ∈ f −1(0)

i : xi ≠ yi

:=

:=

𝖪𝖶(f) ⊆ f −1(1) × f −1(0) × [n]
Given , find such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi ≠ yi

f(x1, x2, x3, x4)

Combinatorial Rectangles
• A combinatorial rectangle in

 is a set of the form

 for .

• The set of inputs reaching a node
in a protocol is a combinatorial
rectangle!

U × V

A × B ⊆ U × V

A ⊆ U, B ⊆ V

𝖪𝖶(f) ⊆ f −1(1) × f −1(0) × [n]
Given , find such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi ≠ yi

f(x1, x2, x3, x4)

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 x = (1,1,0,0)

 y = (0,1,0,0)

 1 1 0 0
 0 1 0 0

 1
 0

 0
 0

 1
 0

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1 1 0 0
 0 1 0 0

 1
 0

 0
 0

 1
 0

 x = (1,1,0,0)

 y = (0,1,0,0)

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1 1 0 0
 0 1 0 0

 1
 0

 0
 0

 1
 0

 x = (1,1,0,0)

 y = (0,1,0,0)

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1 1 0 0
 0 1 0 0

 1
 0

 0
 0

 1
 0

 x = (1,1,0,0)

 y = (0,1,0,0)

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1 1 0 0
 0 1 0 0

 1
 0

 0
 0

 1
 0

 x = (1,1,0,0)

 y = (0,1,0,0)

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1 1 0 0
 0 1 0 0

 1
 0

 0
 0

 1
 0

 x = (1,1,0,0)

 y = (0,1,0,0)

Finished!

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

 gates∨
 gates∧

Formulas Communication≡
Boolean Formula for f Protocol for 𝖪𝖶(f)

f = (x1 ∧ x2) ∨ x3 ∨ x4

Reverse Direction Also Works!

Formulas Communication≡

Theorem.  
Let be a partial boolean function. Then

Size , depth Boolean formula for  
if and only if  

Size , depth communication protocol for

f : {0,1}n → {0,1,*}

≤ s ≤ d f

≤ s ≤ d 𝖪𝖶(f)

Correspondence is stronger: essentially the same object!

Formulas Communication≡

Theorem.  
Let be a partial monotone boolean function. Then

Size , depth monotone Boolean formula for  
if and only if  

Size , depth communication protocol for

f : {0,1}n → {0,1,*}

≤ s ≤ d f

≤ s ≤ d 𝗆𝖪𝖶(f)

Correspondence is stronger: essentially the same object!

Total Search Problems in Communication
• Let be finite, .

• are feasible solutions for .

• is a total search problem if

• Communication Complexity of  
 Depth of shallowest protocol solving

• All total search problems such that

X, Y, O 𝒮 ⊆ X × Y × O

𝒮(x, y) := {o ∈ O : (x, y, o) ∈ 𝒮} (x, y)

𝒮 ∀(x, y) : 𝒮(x, y) ≠ ∅

𝖥𝖯cc(𝒮) := 𝒮
:= 𝒮

𝖥𝖯cc := 𝒮

𝖥𝖯cc(𝒮) = logO(1)(n)

Communication TFNP
• A certificate cover of is a set of rectangles such that every

 is consistent with some .
𝒮 ℛ

(x, y) ∈ X × Y R ∈ ℛ

 𝖳𝖥𝖭𝖯dt(𝒮) := min
ℛ cover

log |ℛ |

• Algorithm: Given ,

• Non-deterministically guess (bits)

• Verify that by exchanging 1 bit of communication

𝖭𝖯 (x, y) ∈ X × Y
R ∈ ℛ log |ℛ |

(x, y) ∈ R

What’s So Special About ?𝗆𝖪𝖶(f)
• If and let

• The set is a rectangle
cover for

f : {0,1}n → {0,1,*} i ∈ [n]

Xi := {x ∈ f −1(1) : xi = 1} × {y ∈ f −1(0) : yi = 0}

{Xi : i ∈ [n]}
𝗆𝖪𝖶(f)

∴ 𝖳𝖥𝖭𝖯cc(𝗆𝖪𝖶(f)) ≤ log n

X1 X2

X3 X4

f −1(1)

f −1(0)

What’s So Special About ?𝗆𝖪𝖶(f)
Fact [R90, G01]. Every rectangle cover

 of a set is equivalent to
 for some partial monotone

.

Proof. For each let be

For each let be such that

Define for all , for all .

ℛ = {R1, …, Rn} U × V
𝗆𝖪𝖶f

f : {0,1}n → {0,1,*}

u ∈ U x(u) ∈ {0,1}n

x(u)
i = 1 ⇔ u ∈ Ri

v ∈ V y(v) ∈ {0,1}n

y(v)
i = 0 ⇔ v ∈ Ri

f(x(u)) = 1 u f(y(v)) = 0 v

R1 R2

R3 R4

U

V

U × V

u

v

x(u) = 1100

y(v) = 0100

What’s So Special About ?𝗆𝖪𝖶(f)

Lesson

Any total search problem
can be reduced to solving for
some partial .

(Converse holds, under reasonable assumptions.)

𝒮 ∈ 𝖳𝖥𝖭𝖯cc

𝗆𝖪𝖶(f)
f : {0,1}n → {0,1,*}

R1 R2

R3 R4

U

V

U × V

Summary
• Any has a Karchmer-Wigderson game

• Comm. Protocols for Boolean formulas computing

• is complete* for

f : {0,1}n → {0,1,*}

𝗆𝖪𝖶(f) ≡ f

𝗆𝖪𝖶(f) 𝖳𝖥𝖭𝖯cc

Can we capture other circuit models?

These Stories Are The Same
Bottom-up models (proofs, circuits)

are captured by

Top-down algorithms (decision trees, comm. protocols)

• and

• Capture the complexity of these processes

• Are canonical examples of their respective classes

• We now outline a general theory capturing both of these cases.

𝖲𝖾𝖺𝗋𝖼𝗁(F) 𝗆𝖪𝖶(𝖿)

𝖳𝖥𝖭𝖯

Part 3

The TFNP Program in Proof and Circuit
Complexity

Classical Theory of TFNP
• Introduced by Papadimitriou [Pap 94]

• Class of problems for which a witness always exists.

• Subclasses are defined via polynomial-time reductions to
particular problems.

• Problems often represent theorems used to prove existence results; e.g.

Handshaking Lemma, Fixed-Point Theorems, Sperner’s Lemma, …

• Vibrant theory with many connections to other fields:

• Game Theory, Cryptography, Combinatorics, Bounded Arithmetic, …

𝖳𝖥𝖭𝖯 := 𝖭𝖯

Example

Handshaking Lemma.

Every graph has an even number of odd-degree nodes.

Input: Set of nodes , , neighbourhood function with .

Feasible Solutions: Let be s.t. iff .

• if , or

• if and

V v0 ∈ V N(u) ⊆ V |N(u) | ≤ 2

G = (V, E) uv ∈ E u ∈ N(v), v ∈ N(u)

v0 deg(v0) ≠ 1

v ∈ V v ≠ v0 deg(v) = 1

v0

Feasible Solutions

PPA

Input: Set of nodes , , neighbourhood function with .

Feasible Solutions: Let be s.t. iff .

• if , or

• if and

V v0 ∈ V N(u) ⊆ V |N(u) | ≤ 2

G = (V, E) uv ∈ E u ∈ N(v), v ∈ N(u)

v0 deg(v0) ≠ 1

v ∈ V v ≠ v0 deg(v) = 1

PPA

• Complexity class contains total search problems reducible to this problem

• Have poly-time Turing Machines such that on input

• := Neighbourhood of node on input

• := Solution labelling node on input

• Given , get graph , solve problem on that graph, output solutions

𝖯𝖯𝖠

N, S x ∈ {0,1}*
N(x, u) u x
S(x, u) u x

x Gx 𝖯𝖯𝖠

Prominent Subclasses of TFNP
𝖳𝖥𝖭𝖯

Prominent Subclasses of TFNP
𝖳𝖥𝖭𝖯

𝖯𝖯𝖠

Guess solution, verify using
neighbourhood functions

Prominent Subclasses of TFNP
𝖳𝖥𝖭𝖯

𝖯𝖯𝖠

𝖥𝖯

𝖯𝖯𝖠𝖣

𝖯𝖯𝖯𝖯𝖫𝖲

𝖯𝖯𝖠𝖣𝖲

Prominent Subclasses of TFNP
𝖳𝖥𝖭𝖯

𝖯𝖯𝖠

𝖥𝖯

𝖯𝖯𝖠𝖣

𝖯𝖯𝖯𝖯𝖫𝖲

𝖯𝖯𝖠𝖣𝖲
“Bijective Pigeonhole Principle”

“Every dag has a sink”

“Injective Pigeonhole Principle”

“Pigeonhole Principle”

“Handshaking Lemma”

Communication and Query TFNP
• We have seen the classes:

• total with - depth decision trees (tree resolution)

• total with - width certificates (narrow unsat. CNFs)

• total with - depth comm. protocols (boolean formulas)

• total with - size rectangle covers ()

• Can define other classes by reductions.

• Use either shallow decision trees or shallow communication protocols, rather

than Turing Machines.

• Can characterize other proof systems and circuit classes!

𝖥𝖯dt := 𝒮 logO(1) n
𝖳𝖥𝖭𝖯dt := 𝒮 logO(1) n F
𝖥𝖯cc := 𝒮 logO(1) n
𝖳𝖥𝖭𝖯cc := 𝒮 logO(1) n 𝗆𝖪𝖶(f)

Input: Set of nodes , , neighbourhood function with .

Feasible Solutions: Let be s.t. iff .

• if , or

• if and

V v0 ∈ V N(u) ⊆ V |N(u) | ≤ 2

G = (V, E) uv ∈ E u ∈ N(v), v ∈ N(u)

v0 deg(v0) ≠ 1

v ∈ V v ≠ v0 deg(v) = 1

Query PPA

• To solve , we reduce to above using decision trees:

• := Decision tree for , outputs neighbourhood of node on input

• := Solution of labelling node on input

• Given , run all decision trees in parallel to get graph , solve problem on that
graph, output solutions labelling feasible solutions of

𝒮 ⊆ {0,1}n × O
Nu(x) u u x
ou ∈ O 𝒮 u x

x Gx 𝖯𝖯𝖠
Gx

v0

Query PPA

𝒮 ⊆ {0,1}n × O

Decision trees querying x ∈ {0,1}n

v0

Query PPA

𝒮 ⊆ {0,1}n × O

Evaluate all trees, output labels of
feasible solutions

o

Output o

v0

Query PPA

𝒮 ⊆ {0,1}n × O

Evaluate all decision trees, output
labels of feasible solutions

On a different input…

Output , , o o′￼ o′￼′￼

o

o′￼

o′￼′￼

Query PPA
• [BCEIP 98] Observed that if then has a low-

degree Nullstellensatz refutation over

• [GKRS 18] Observed the converse: low-degree Nullstellensatz
implies an efficient reduction to

𝖲𝖾𝖺𝗋𝖼𝗁(F) ∈ 𝖯𝖯𝖠dt F
𝔽2

𝖯𝖯𝖠

Theorem. [BCEIP 98, GKRS 18] 
Let be an unsatisfiable CNF. There is a size , degree
-Nullstellensatz refutation of iff can be depth
reduced to on vertices.

F ≤ s ≤ d 𝔽2

F 𝖲𝖾𝖺𝗋𝖼𝗁(F) O(d)
𝖯𝖯𝖠 sO(1)

Query TFNP Classes
𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt
“Bijective Pigeonhole Principle”

“Every dag has a sink”

“Injective Pigeonhole Principle”

“Pigeonhole Principle”

“Handshaking Lemma”

Query TFNP Classes
𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt

Resolution [BKT 14] Nullstellensatz [BCEIP 98, GKRS 18]𝔽2

Tree Resolution

Query TFNP Classes (New Results)
𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt Low-Coeff. -Nullstellensatz 
[GKRS 18, HGMPRST 22]

ℤ

Resolution [BKT 14]

Low-Coeff. Sherali-Adams 
[HGMPRST 22]

 Nullstellensatz [BCEIP 98, GKRS 18]𝔽2

Tree Resolution

𝖲𝖮𝖯𝖫dt
=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

Reversible Resolution 
[HGMPRST 22]

𝖤𝖮𝖯𝖫dt

=
𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Reversible Resolution* 
[HGMPRST 22]

Query TFNP Classes (New Results)
𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt Low-Coeff. -Nullstellensatz 
[GKRS 18, HGMPRST 22]

ℤ

Resolution [BKT 14]

Low-Coeff. Sherali-Adams 
[HGMPRST 22]

 Nullstellensatz [BCEIP 98, GKRS 18]𝔽2

Tree Resolution

𝖲𝖮𝖯𝖫dt
=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

Reversible Resolution 
= Max-SAT Resolution 

[HGMPRST 22]

𝖤𝖮𝖯𝖫dt

=
𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Reversible Resolution* 
= Max-SAT Resolution* 

[HGMPRST 22]

Reversible Resolution = Max-SAT Resolution
• Single “reversible” resolution rule:

 

• From deduce or vice-versa, clauses are consumed!

C ∨ ℓ C ∨ ℓ
C

C ∨ ℓ, C ∨ ℓ C

Theorem. [HGMPRST 22] 
There is a size- , width- Reversible Resolution proof of

if and only if

there is a size , width- Resolution proof and a size- , degree-
low-coefficient Sherali-Adams proof.

s w F

sO(1) O(w) sO(1) O(w)

Communication TFNP
Boolean Circuits 
[R 95, K 97, S 17]

 Span Programs [GKRS 18]𝔽2

Boolean Formulas [KW 90]

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc
=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=
𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

Communication TFNP
Boolean Circuits 
[R 95, K 97, S 17]

 Span Programs [GKRS 18]𝔽2

Boolean Formulas [KW 90]

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc
=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=
𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

Communication TFNP
Boolean Circuits 
[R 95, K 97, S 17]

 Span Programs [GKRS 18]𝔽2

Boolean Formulas [KW 90]

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc
=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=
𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

Should be small-coeff  
Extended Formulations

[FGGR 22]
Should be small-coeff. 

-Span Programs [GKRS 18]ℤ

Should be “bounded-
fanout” circuits (comparator/

scatter-free circuits) 
 [MS92, F92, S94, DRip]

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt

𝖲𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

𝖤𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Query TFNP Communication TFNP
Feasible Interpolation 

Proof Upper Bounds Circuit Upper Bounds⟹

Lifting Theorems 
Proof Lower Bounds Circuit Lower Bounds⟹

“Feasible Interpolation”
• Many interesting results from relating two worlds

• If is a query search problem, let be variable partition

• Define as a communication problem, so

• Alice gets , Bob gets , solutions are

• Easy to see that for any class ,

• Translates circuit lower bounds to proof lower bounds

• Closely related to classical feasible interpolation results [K97, P97, BPR00,…]

• Construction underlies Cutting Planes l.bs for random CNFs [FPPR 16, HP16]

𝒮 ⊆ {0,1}n × O [n] = X ∪ Y

𝒮X,Y ⊆ {0,1}X × {0,1}Y × O
x ∈ {0,1}X y ∈ {0,1}Y 𝒮X,Y(x, y) = 𝒮(xy)

𝖳𝖥𝖭𝖯 𝒞 𝒮 ∈ 𝒞dt ⟹ 𝒮X,Y ∈ 𝒞cc

Lifting Theorems
• Query-to-communication lifting theorems give the other direction

• is a query search problem, is a gadget

• Define by

• Alice gets , Bob gets , evaluate and solve

• If “complex” then Alice and Bob’s best strategy is to simulate the query strategy

𝒮 ⊆ {0,1}n × O g : X × Y → {0,1}n

𝒮 ∘ g ⊆ Xn × Yn × O (𝒮 ∘ g)(x, y) = 𝒮(gn(x, y))

x ∈ Xn y ∈ Yn z = gn(x, y) 𝒮(z)

g

Theorem. [RM 99, GPW 14] 
Let be a search problem, let by

. If then

𝒮 ⊆ {0,1}n × O 𝖨𝗇𝖽m : [m] × {0,1}m → {0,1}

𝖨𝗇𝖽m(x, y) = yx m = nO(1)

𝖥𝖯cc(𝒮 ∘ 𝖨𝗇𝖽m) = Θ(𝖥𝖯dt(𝒮) ⋅ log m)

Lifting Theorems
Proof Complexity Size Proof Complexity

Degree
Circuit Complexity

Measure Gadget Citation

Tree-Like

Resolution Size Resolution Depth Monotone Formula Size Index,  

Low-Discrepancy
[Folklore, RM99,  

GPW14, CKFMP19]

Resolution Size Resolution Width Monotone Circuit Size Index [GGKS17]

Nullstellensatz
Monomial Size Nullstellensatz Degree Monotone Span

Program Size Any High Rank [PR18, dRMNPR20]

Sherali-Adams
Monomial Size Sherali-Adams Degree Linear Extension

Complexity Index, Inner Product*
[GLMW14, CLRS14,

KMR17] 
(Incomplete)

Sums-of-Squares 
Monomial Size SOS Degree Semidefinite Extension

Complexity Index* [LRS15]

(Incomplete)

TFNP Program in Proof and Circuit Complexity
• All in all, this suggests a research program!

• Use classes to characterize circuit and proof classes.

• Relate these classes by feasible interpolation and lifting theorems

• Use intuition from one setting to prove results in the other setting.

• Many classes are not characterized in either setting.

• Intersection theorems are particularly interesting!

• Reversible Resolution = Resolution Sherali-Adams* [HGMPRST 22]

𝖳𝖥𝖭𝖯

𝖳𝖥𝖭𝖯

∩

Open Problems
• What problem captures Sums-of-Squares?

• What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)

• Characterize more circuit and proof classes using classes.

• Can this approach (communication and query complexity) say anything novel
about very powerful proof systems?

• What about non-monotone complexity? Can anything be said?

𝖳𝖥𝖭𝖯

𝖳𝖥𝖭𝖯

Thanks for Listening!

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt

𝖲𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

𝖤𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Query TFNP Communication TFNP
Feasible Interpolation 

Proof Upper Bounds Circuit Upper Bounds⟹

Lifting Theorems 
Proof Lower Bounds Circuit Lower Bounds⟹

