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Complexity in Ideals of Polynomials

Family of rings !" = $ %&,… , %) "
Family of ideals *" ⊆ !" , denoted * = *" ",&,-,.,…

Main motif: Given a family of ideals* *", what can be said 
about the complexity of polynomials /" ∈ (*")?

*Or sometimes their cosets 3" + *"



How did we get here?

Complexity 
In Ideals

Algebraic proof complexity

Polynomial Identity Testing (PIT)

Geometric complexity 
theory (GCT)

Algebraic vs Boolean
Circuit complexity

Algebraic natural proofs



Rings & Ideals

Definitions: 
• A ring ! has (+,×, 0,1) satisfying usual axioms (e.g. 

distributivity). Examples: ℤ,ℚ,ℝ, ℂ, -., -[01, … , 03]
• 5 ⊆ ! is an ideal if (1) 5 is closed under addition & negation

(2) 5 is closed under multiplication by arbitrary elements of !: 
(∀ 8 ∈ 5, : ∈ !)[:8 ∈ 5].

• 5 is generated by <1, … , <= if it is the smallest ideal containing 
these. In this case we write 5 = ⟨ <1, … , <= ⟩. It follows that 5 =
{∑CD1

= <CEC EC ∈ ! . Examples: F ⊆ ℤ, 0G, H ⊆ -[0, H]

• A coset of 5 is : + 5 = {: + 8 ∶ 8 ∈ 5} for some : ∈ !. The 
cosets form the quotient ring !/5.



Prologue:
Algebraic circuit complexity
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VP (“Valiant’s P”) is the class of p-computable functions, 
i.e. polynomial families ("#) such that "# has:

• poly(n) variables
• poly(n) degree
• poly(n)-size algebraic circuits

Example: %&'# (

Algebraic Circuits



VNP is the class of p-definable functions, i.e. ("#($)) such that 
there is &# ', $ ∈ *+ with

"# $ = -
.∈ /,0 1234(5)

&#(', $)

Example: 6'78#(9) =
-

:∈ /,0 5×5
<
=,>,=?,>?

=@=?⇔>B>?

(1 − E=>E=?>?) <
=∈[#]

-
>∈[#]

E=> <
=∈[#]

-
>∈[#]

9=>E=>

VNP is morally equivalent to counting solutions to NP problems

Algebraic “NP”



Theorem [Bürgisser ‘00]:!"/poly ≠ "/poly ⇒ *" ≠ *!"

Algebraic complexity:
• Formally necessary for Boolean complexity
• More structured – if we can’t even prove lower bounds 

here…
• Captures key difficulties in Boolean complexity [Valiant 

‘79]

Boolean ➞ Algebraic Complexity

https://doi.org/10.1016/S0304-3975(99)00183-8
https://doi.org/10.1145/800135.804419


Complexity in Ideals I:
Algebraic vs Boolean complexity



In algebraic complexity, we consider polynomials 
symbolically

Example 
!" − ! is different from 0 as a polynomial over ℤ/2ℤ, even 
though they are the same function over ℤ/2ℤ

In Boolean complexity, we only care about the Boolean 
function

Complexity in Ideals I:
Boolean vs Algebraic Complexity



Can translate Boolean operations to algebra:

But many polynomials define the same (Boolean) function 
on 0,1 $ ⊆ &$. This is one reason algebraic lower bounds 
don’t imply Boolean ones, even over finite fields.

Complexity in Ideals I:
Boolean vs Algebraic Complexity

Boolean Algebraic
Variable ' Variable '

¬) 1 − )
) ∧ , ) ⋅ ,

Function 0,1 $ → {0,1} Polynomial over &$, restricts 
to a function 0,1 $ → {0,1}



Many polynomials define the same (Boolean) function on 
0,1 $ ⊆ &$. This is one reason algebraic lower bounds 

don’t imply Boolean ones , even over finite fields.

Ideals to the rescue: '| ),* + = -| ),* + ⟺ ' − - ∈ ⟨234 − 23|∀6⟩. 

Lower bounds on all polynomials in the 
ideal coset 8 + ⟨:;< − :;|∀;⟩ over =>
imply Boolean lower bounds on 8.

Complexity in Ideals I:
Boolean vs Algebraic Complexity



Complexity in Ideals II:
Algebraic proof complexity



Algebraic Proof Complexity

Something I like about proof complexity: gives a way of 
measuring the complexity of individual instances of SAT

Algebraic proof complexity studies how hard it is to prove there 
are no solutions to systems of polynomial equations

!" $⃗ = !& $⃗ = ⋯ = !( $⃗ = 0

Arises naturally…
• …in geometric theorem-proving
• …as a path towards *+,[.]-Frege lower bounds, which we’re 

still stuck on (despite Razborov-Smolensky)!



Algebraic Proof Complexity

Systems of polynomial equations can simulate Boolean 
equations:
!"# − !" = 0 forces !" ∈ 0,1
* ! ∶= 1 − ! (1 − ! = 0 is satisfied iff ! is TRUE)
* ¬- ≔ 1 − *(-)
* - ∨ 2 ≔ * - *(2)

Hilbert’s Nullstellensatz: 34 = 3# = ⋯ = 36 = 0 has no 
solutions ⇔ there are polynomials 84,… , 86 such that 

3484 + 3#8# +⋯+ 3686 = 1
i.e. 1 ∈ ⟨34,… , 36⟩



Hilbert’s Nullstellensatz: !" = !$ = ⋯ = !& = 0 has no 
solutions ⇔ there are polynomials )",… , )& such that 

!")" + !$)$ +⋯+ !&)& = 1.
Introduce new place-holder variables /",… , /&, get a new 

polynomial
0 2⃗, /", … , /&, = /")" 2⃗ + ⋯+ /&)&(2⃗)

Definition: 0(2⃗, /⃗) is an IPS certificate if

1. 0 2⃗, !(2⃗) = 1
2. 0 2⃗, /⃗ ∈ /", … , /&

The Ideal Proof System [P96, P98, GP14]

https://doi.org/10.1090/dimacs/031/07
https://www.math.uni-bielefeld.de/documenta/xvol-icm/14/Pitassi.MAN.html
https://doi.org/10.1145/3230742


Definition: !($⃗, &) is an IPS certificate if

1. ! $⃗, *($⃗) = 1
2. ! $⃗, &⃗ ∈ &., … , &0

Definition: The IPS complexity of an unsatisfiable system of 
equations is the optimum algebraic complexity of any certificate. 

E.g. algebraic circuit size, formula size, VNP, …

Default: algebraic circuit size (no degree bound!)

The Ideal Proof System [P96, P98, GP14]

https://doi.org/10.1090/dimacs/031/07
https://www.math.uni-bielefeld.de/documenta/xvol-icm/14/Pitassi.MAN.html
https://doi.org/10.1145/3230742


Cone Proof System introduced by Alekseev, Grigoriev, 
Hirsch, Tzameret (STOC ‘20)

Ideal Proof System is to Polynomial Calculus

As
Cone Proof System is to Sum of Squares

What is the analogue of complexity in ideal cosets for the 
cone proof system?

Aside:
What about semi-algebraic?

https://doi.org/10.1145/3357713.3384245


Randomized Verification of IPS
Polynomial Identity Testing

PIT(C)
Input: an algebraic circuit ! from "
Decide: Does ! compute the zero polynomial? 
(Remember: polynomial ≠ function)

Schwarz-Zippel-DeMillo-Lipton: PIT is in coRP. Proof: 
evaluate at random points. (1-page proof by Moshkovitz
‘10)

Kabanets-Impagliazzo ‘04: Derandomizing PIT implies 
circuit lower bounds (simplified in [CIKK15])

https://eccc.weizmann.ac.il/report/2010/096
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.645


Proposition [P96]: If !" ⊈ $%&', then some tautologies 
require super-polynomial size IPS proofs.

Note: !" ⊆ $%&' ⇒ "* collapses.
Proof: Merlin guesses the poly-size circuit for a certificate, 

Arthur verifies it’s a certificate using two polynomial 
identity tests (PIT):

1. - /⃗, 1 /⃗ = 1
2. - /⃗, 4⃗ ∈ 46, … , 48 , that is, - /⃗, 0 = 0.

QED
Dealing w/ constants needs more work, coAM, & GRH.

Randomized Verification and
IPS versus NP

https://doi.org/10.1090/dimacs/031/07


Theorem [GP14]: Any super-polynomial lower bound on 
IPS over a ring ! implies "#$%& ≠ "$%&.

Key Lemma: Every unsatisfiable CNF has a "#$&
certificate.

Proof of Theorem assuming Key Lemma: A super-
polynomial size lower bound on IPS means there are 
tautologies such that every certificate requires super-
polynomial size. Since some certificate is in "#$&, that 
function requires super-poly size circuits. QED

Circuit Lower Bound Implications

GP14


Definition: !($⃗, &⃗) is an IPS certificate if
1. ! $⃗, *($⃗) = 1
2. ! $⃗, &⃗ ∈ &., … , &0
Condition 1 is equivalent to:

! ≡ 1 234 &. − *. $⃗ , … , &0 − *0 $⃗
i.e.

! ∈ 1 + &. − *. $⃗ , … , &0 − *0 $⃗

Thus the set of IPS certificates is a coset of an ideal:
1 + &. − *. $⃗ , … , &0 − *0 $⃗ ∩ &., … , &0

Key question: complexity of IPS certificates, i.e. polynomials in 
this ideal coset

Complexity in Ideals from
The Ideal Proof System

What structure does the 
set of all IPS certificates 

have?



Li-Tzameret-Wang (CCC ‘15, SICOMP ‘18): Frege is quasi-
poly equivalent to noncommutative formula IPS, when 
given clauses, !"# − !", and !"!% − !%!".

Main idea of proof: Show that Raz-Shpilka ‘04
noncommutative formula PIT algorithm can be 
formalized in Frege.

The set of noncommutative IPS certificates is still an ideal 
coset, but noncommutative ideals need not be finitely 
generated! What does this tell us? Still unclear…

Complexity in Ideals from
The Ideal Proof System

https://doi.org/10.1137/16M1107632
https://doi.org/10.1007/s00037-005-0188-8


Complexity in Ideals III:
Polynomial identity testing



Polynomial Identity Testing

Def: A hitting set generator for a complexity class ! is a 
polynomial map

": $% → $'
such that any nonzero ( ∈ ! also has ( ∘ " ≠ 0. (Over infinite 

fields: f is nonzero on ./ " .)

.0 ≔ ( ( ∘ " = 0} is an ideal!
Proof: If (4 ∘ " = 0, then 5(6 + 8(9 ∘ " = 5(6 ∘ " + 8(9 ∘ " = 0. If 
: any poly, then :( ∘ " = : ∘ " ( ∘ " = 0. QED

G is a hitting set generator for ;
⟺

; lower bound on all polys in the ideal =>



How is this different from circuit lower bounds?

Complexity in complexity classes vs.
Complexity in ideals



Algebraic Circuit Reductions
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Algebraic Circuit Reductions

Definition:
• !" # =min circuit size to compute #, with (+,×, )) gates.
• #+ ≤- ()+), # is a c-reduction of ), if !"./01 2 #+ ≤ 3456(7).
• The (c-)degree of # = (#+) is the equivalence class of #

under ≤-, that is, D9 g ≔ {) | # ≤- ) and ) ≤- #}.
• Given two c-degrees ?@, ?A, ?@ ≤- ?A is well-defined.

Ladner-Type Theorem [Bürgisser ‘00]: If ) <- #, then any 
countable poset embeds in the poset of c-degrees between ), #.

https://doi.org/10.46298/dmtcs.260


Poset of c-Degrees in
Complexity Classes vs. Ideals

In VP vs VNP, suffices to show one polynomial in VNP \ VP.

In an ideal !, we want to know if every polynomial in ! is 
not in VP.

VNP, VQP, … have complete problems (top of the poset). 
WLOG, look for lower bounds on complete problems.

Do ideals have minimal c-degrees?



Factorization &
Principal Ideals

Definition: An ideal is principal if it is generated by 1 element.
Consider the principal ideals !" = $" .

Theorem [K86,B00]: For %" = $"&'ℎ" ($, ℎ coprime).
* $" ≤ * %" ,-./(deg $" , 4")

In fact, $ ≤6 % when 4" ≤ ,-./(7).

Theorem [B04]: C $ ≤ * % ,-./(deg $) (indep. of 4!)

Factor Conjecture [Bürgisser]: $ ≤6 %?

https://doi.org/10.1145/12130.12163
https://doi.org/10.1007/978-3-662-04179-6
https://doi.org/10.1007/s10208-002-0059-5
https://doi.org/10.1007/978-3-662-04179-6


IPS Lower Bounds From

Principal Ideals

Forbes-Shpilka-Tzameret-Wigderson (CCC ‘16, ToC ‘21)

Lemma [FSTW16]: Suppose

! = !# = !$ = ⋯ = !& = 0 is unsatisfiable, but

!# = !$ = ⋯ = !& = 0 is satisfiable.

Then for any IPS certificate ((+⃗, -⃗), we have 

0 ≠ 1 − ( +⃗, 0, !#, … , !& ∈ ⟨!⟩.

Strategy: “Lower bounds for multiples” (i.e. the ideal ⟨!⟩)

http://dx.doi.org/10.4086/toc.2021.v017a010
http://dx.doi.org/10.4086/toc.2021.v017a010


IPS Lower Bounds From
Principal Ideals

Using lower bounds for multiples, i.e. on principal ideals, 
they show:

Theorem [FSTW16]: Exponential lower bounds on Σ ∧ Σ-
IPS proofs for

• #$#% …#' − 1,∑ #, − -, {#,% − #,}
Exponential lower bounds on roABP-IPS proofs for

• ∏,12 #, + #2 − 1 , ∑#, − -, #,% − #,

http://dx.doi.org/10.4086/toc.2021.v017a010


IPS Lower Bounds From
Boolean Ideals

Lemma [FSTW16]: Suppose ! = #$% − #$ = ⋯ = #(% − #( =
0 is unsatisfiable. If every * that agrees with 1/! on 
0,1 ( is not in ., then this does not have .-IPS 

refutations.

Lower bounds on a coset of ⟨#0% − #0|∀3⟩.

http://dx.doi.org/10.4086/toc.2021.v017a010


What is Known:
Algebraic Proof Complexity

Using functional lower bounds = lower bounds on 
Boolean ideal cosets, they get

Theorem [FSTW16]: Exponential lower bounds on Σ ∧ Σ-
IPS proofs for

• ∑$%&% − (, $%* − $% , {&%* − &%} (( > .)
Exponential lower bounds on roABP-IPS proofs for
• ∑0%1$%$1 − (, $%* − $% , {0%1* − 0%1} (( > *2

* )

http://dx.doi.org/10.4086/toc.2021.v017a010


Constant-depth IPS lower bounds
From lower bounds on ideals

Conjecture [G., 2018]: The ideal of !" ×
!
" minors of an $×$

matrix has the determinant as its unique minimum c-degree.

Andrews & Forbes ‘21: Conjecture is true! Even for depth-3 
(border) c-reductions.

Limaye-Srinivasan-Távenas [FOCS ‘21]: Det requires large 
constant depth algebraic circuits.

Andrews & Forbes ‘21: Constant-depth IPS lower bounds on 
det ( = 0, (, = -, {/00 1/23 45506/$}.

Proof: Lower bound for multiples of det. QED

http://bulletin.eatcs.org/index.php/beatcs/article/download/607/626
https://arxiv.org/abs/2112.00792
https://eccc.weizmann.ac.il/report/2021/081/
https://arxiv.org/abs/2112.00792


Lots of Open Questions on
Complexity in Ideals



Open Questions

• Must ideals/cosets have a unique minimum c-degree? 
(Surely not!)

• Must they have only finitely many minimal c-degrees?
• Must they have any minimal c-degree? 
• Can they contain an infinite descending chain of 

degrees?

OPEN even for 2-generated ideals !" = $", &" . (In n vars, 
max # generators is ℇ"() Grzegorczyk primitive 
recursive hierarchy. [Seidenberg ‘71, Simpson ‘88].)

https://doi.org/10.1090/S0002-9939-1971-0280473-X
https://doi.org/10.2307/2274585


Open Questions

Get an IPS lower bound (for some restricted system, say 
roABP, depth 3, constant depth) on the translation of 
Boolean tautologies. 

What is the proof complexity of formalizing other PIT 
algorithms?

Does the p-simulation of IPS by any deterministically 
verifiable (Cook-Reckhow) proof system imply some 
derandomization of PIT?



EXTRA SLIDES



Open Questions

Definition: A c-degree ! is saturated in an ideal " if every 
!’ ≥% ! appears in ".

Observation [see G. ‘18]: In any ideal, every p-bounded c-
degree is saturated, assuming the Factor Conjecture.

OPEN: What about in cosets of ideals?

http://bulletin.eatcs.org/index.php/beatcs/article/download/607/626


How many generators can there be?

Intuition: In ! variables, " equations should have a solution set 
of dimension ! −", so should never need more than !
equations.

True if equations are “generic” (=chosen randomly).
False in general!

Example: twisted cubic $%, $'(, $(', (% : $, ( ∈ + ⊆ +-
2D variety in 4D, “should” only need 2 equations.
But needs 3:

./ − 0', 01 − /', .1 − 0/



How many generators can there be?

Grzegorczyk primitive recursive hierarchy ℇ".
ℇ# =linear
ℇ% =polynomial
ℇ& =tower of exponentials of const. height
ℇ" =primitive recursive over ℇ"'#.

Theorem [Seidenberg ‘71; Simpson ‘88]: An ideal in 
([*#, … , *"] generated in degrees ≤ / needs no more 
than ℇ"0# generators. 



How many generators can there be?

Grzegorczyk primitive recursive hierarchy ℇ".
ℇ# =linear
ℇ% =polynomial
ℇ& =tower of exponentials of const. height
ℇ" =primitive recursive over ℇ"'#.

Theorem [Seidenberg ‘71; Simpson ‘88]: An ideal in 
([*#, … , *"] generated in degrees ≤ / needs no more 
than ℇ"0# generators. And this is tight!

https://doi.org/10.1090/S0002-9939-1971-0280473-X
https://doi.org/10.2307/2274585


Key Lemma: Every DNF tautology has a !"#$ certificate.
Proof: 
1. %& + 1 − %& = 1

%&%+ + %& 1 − %+ + 1 − %& %+ + 1 − %& 1 − %+ = 1
,

-∈ $,& 0
1
2

%2 if 52 = 0
1 − %2 if 52 = 1 = 1

2. Turn this into a certificate.
3. Show the certificate is in VNP.

Circuit Lower Bound Implications:
Proof of Key Fact



2. Turn this into a certificate. 
!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

1 = !" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+ 1 − x" 1 − x( x) + 1 − x)
+ 1 − x" x( 1 − x)
+ 1 − !" !(!)

Circuit Lower Bound Implications:
Proof of Key Fact
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2. Turn this into a certificate. 
!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+ 1 − x" x( 1 − x)
+ 1 − !" !(!)

Circuit Lower Bound Implications:
Proof of Key Fact



2. Turn this into a certificate. 
!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+ 1 − x" x( 1 − x)
+ 1 − !" !(!)
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2. Turn this into a certificate. 
!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+ 1 − x" *)
+ 1 − !" !(!)
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2. Turn this into a certificate. 
!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+ 1 − x" *)
+ 1 − !" !(!)
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2. Turn this into a certificate. 
!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+ 1 − x" *)
+ 1 − !" !(*/

Circuit Lower Bound Implications:
Proof of Key Fact



!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+*) 1 − x"
+*/ 1 − !" !(

3. Show the certificate is in VNP.

0
1234565 7

87 0
9∈ ;," =

(1 − >7 @⃗ ) A
BC7

>B(@⃗) A
D∉FG

!D if @D = 0
1 − !D if @D = 1

Circuit Lower Bound Implications:
Proof of Key Fact



!" = 0 ∧ 1 − !" 1 − !( = 0 ∧ !( 1 − !) = 0 ∧ !) = 0

*" !(!) + !( 1 − !) + 1 − !( !) + (1 − !()(1 − !))
+*( x) + 1 − x)
+*) 1 − x"
+*/ 1 − !" !(

3. Show the certificate is in VNP.

0
1234565 7

87 0
9∈ ;," =

(1 − >7 @⃗ ) A
BC7

>B(@⃗) A
D∉FG

(@D + 1 − 2@D !D)

QED

Circuit Lower Bound Implications:
Proof of Key Fact


